拓扑与泛函学习笔记:紧与列紧

0. 背景描述

最近在学习结构力学中的一些定性理论,突然发现这些力学理论背后是比较艰深的数学知识。感慨自己之前囫囵吞枣学习的那点点集拓扑、泛函分析、实变函数还是有点用的。于是便继续深入学习了一下,这篇文章的主体是在了解有界性、紧性的过程中遇见的一篇公众号文章,感兴趣的可以点击这里

感谢原作者的分享。互联网就是这么神奇,某人在某个时刻的顿悟会在另外一个时空对另一个人有别样的启发。太妙了!

1. 原文

下面是原文,个人感觉需要常读常新,毕竟像聚点、度量空间、距离空间、覆盖这些概念是需要经常咀嚼的。

人们一开始从实数轴上的闭区间出发,因为闭区间上的连续函数有着非常好的性质,人们试图将闭区间具有的这种性质提炼到任意一个拓扑空间上。一开始,人们认为这个性质可以用“闭区间的任意无穷子集都有聚点”来描述,但随着人们的探索发现,紧性才是对上述性质的最佳解释。

紧(compact):设Y是拓扑空间X的子空间,如果Y的任意开覆盖都存在有限子覆盖,那么称Y是紧的。

紧性是个非常好的性质,其中我们所熟知的闭区间上的连续函数能取到最值以及闭区间上连续函数一定一致连续都可以推广到紧集上来。因为本文主要是帮助概念的理解,更多围绕紧性的定理此处就不过多叙述,可查看拓扑书中相应章节。

但是在分析学中,人们似乎更喜欢聚点、收敛等概念,起码对笔者来说,紧性确实显得更抽象,不如“闭区间的任意无穷子集都有聚点”这样的描述来的舒服。事实上,人们也确实考虑了这个性质。

如果拓扑空间X的任意无穷子集都有聚点,那么称它具有 Bolzano-Weierstrass 性质,有的书也称它为 limit point compactness。可以证明,紧蕴含Bolzano-Weierstrass性质,反之则不然。

我们曾学过 Bolzano-Weierstrass 聚点定理,有界数列必有收敛子列,也可以说R^n中有界闭集的任意无穷子集至少有一个聚点。这里的第二种描述体现的正是Bolzano-Weierstrass性质。当然,第一种描述也有对应的概念,也就是列紧。
列紧(sequentially compact):如果拓扑空间X的任意序列都有收敛子列,那么称X为列紧的。

能感受到,我们学过的聚点原理似乎通过某种桥梁,将紧,列紧与Bolzano-Weierstrass性质连接了起来。这座桥梁便是泛函分析中我们最关注的对象——距离空间。

对于一个集合X,如果我们可以定义一个距离函数,使它成为距离空间,则由该距离我们便能诱导出的相应的拓扑,使之成为一个拓扑空间。拓扑空间上的许多结论自然可以放到距离空间上来。同时,因为距离的存在,也使这个拓扑空间的性质更加丰富。

对于距离空间X,紧、列紧以及Bolzano-Weierstrass性质三者等价,三个不同的概念便通过距离空间联系到了一起。

这里笔者觉得需要多提一句。尽管聚点原理有两种描述,但Bolzano-Weierstrass性质与列紧在拓扑空间中并不等价。

在拓扑空间中,点列{xn}收敛于x0的定义是,对于点x0的任一邻域U,都存在正整数N,当n>N时,xn都位于U中。数学分析中,我们知道如果x0是聚点,那么一定有序列收敛于x0。而在一般的拓扑空间中,当x0是集合X的聚点时,X中甚至可能不存在序列收敛于x0。

因此对于可赋予距离的R^n,根据Bolzano-Weierstrass性质与列紧的等价性,聚点原理便常常能以不同的形式出现在不同的教材中。

那聚点原理中的“有界闭集”所体现的性质是什么呢?它体现的正是距离空间里三个等价定义中的紧性。

在R^n中,集合X是紧的当且仅当集合X是有界闭集。

这一条定理非常重要,它告诉了我们在R^n中,我们可以用距离空间所特有的概念——有界,来衡量抽象的紧性。(有界是距离空间才有的概念,在一般的拓扑空间中没有定义过有界)

因此,由于R^n中的紧集一定是有界闭集,再根据距离空间中紧性与Bolzano-Weierstrass性质以及列紧等价,我们便能知道聚点原理中“有界闭集”的意义所在。

在泛函分析中,我们的研究对象是距离空间,所以通过紧与列紧的等价性,我们便可以直接运用更直观的“列紧”概念,来体现“紧”的性质。(感谢距离空间👏)

到这里可能还有一个疑问。我们已经知道,在有限维向量空间中(这里已经假设该向量空间具有距离结构),列紧能用距离空间的特有概念有界来描述。那无穷维的空间呢?

这里便有了新的概念——完全有界。在无穷维向量空间中,有界已经不足以形容列紧了,无穷维空间中的有界闭集不一定列紧。而完全有界正是一个可以更好地刻画距离空间中列紧性的存在。

在距离空间中,列紧蕴含完全有界,如果距离空间完备,则列紧性与完全有界等价。

这里提到了完备性,笔者认为完备和闭也是值得消化吸收并加以区分的两个概念,尽管它们两个在很多定理的叙述上有相似的地方。之后有机会,笔者也想谈谈自己对完备和闭的理解。在这里,先给出如下重要定理。

完备度量空间的闭子集也是完备的。

因此,在很多定理的叙述中,我们自然可以用闭集来替代完备性。比如聚点原理中的有界闭集反映的正是完备性(由于R^n完备)。事实上,大家可以翻书查查,在以后很多定理的叙述中,一旦涉及到闭集,往往体现的都是完备性。如果度量空间本身不完备,我们便会在定理叙述时的闭集前加上完备二字。

总的来说,笔者认为分清紧,列紧以及Bolzano-Weierstrass性质之间的关系是必要的。不能因为度量空间中他们三者等价而忽视它们之间的区别。分清关系才能帮助我们在面对同一定理的不同叙述的时候,能很快认出他们的等价性,而不是发出疑惑“诶,我记得这个定理不是这样的”。

最后,我们可以快速梳理需要掌握的内容。因为研究的是度量空间,我们知道紧就是列紧,我们学到过有关紧集的性质自然可以挪用到列紧上来。同时,我们用度量空间特有的“有界性”概念去更直观的描述列紧,并用有界和完全有界对有限维空间和无穷维空间进行了一个刻画。在有限维距离空间中,列紧就是有界完备集合,在无穷维距离空间中,列紧就是完全有界完备集合。

  • 19
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

George1415926

看着有用,请作者喝杯咖啡啦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值