阿里云百炼平台全面升级,5到10行代码即可搭建企业级RAG应用

5月9日,在北京阿里云AI智领者峰会上,阿里云CTO周靖人公布百炼大模型平台最新进展。百炼平台从模型开发、应用开发到算力底座全面升级,更加易用、更加开放,引入更多模型,还率先兼容LlamaIndex等开源框架,企业可自由替换能力组件来适配自身系统。针对当下企业最关注的RAG链路,百炼提供灵活开放的企业级检索增强服务,5到10行代码即可搭建RAG应用,让大模型拥有“最强外挂”。

2023年10月,阿里云发布了百炼大模型平台,开发者可通过“拖拉拽”5分钟开发一款大模型应用,几小时“炼”出一个专属模型,把精力专注于应用创新。本次大会上,百炼升级成为阿里云承载云+AI能力的重要平台,提供一站式、全托管的大模型定制与应用服务。升级后,百炼可以更好支持地大型企业和成熟开发者的需求。

当下企业应用大模型存在三种范式:一是对大模型开箱即用,二是对大模型进行微调和持续训练,三是基于模型开发应用,其中最典型的需求是RAG,以企业数据对大模型进行知识增强。围绕这些需求,百炼打造了模型中心和应用中心,提供最丰富的模型和最易用的工具箱。”周靖人介绍。

对希望直接调用模型进行推理的企业,百炼集成了上百款大模型api,除了通义、Llama、ChatGLM等系列,还首家托管百川等系列三方模型,覆盖国内外主流厂商,联动魔搭开源社区,同时支持企业上架通用或行业模型,给开发者提供足够多的模型选择。同时,百炼依托阿里云AI基础设施,支持千亿级模型的万级并发推理,充分满足企业需求。

对需进一步训练模型的用户,百炼提供从数据管理、模型调优、评测到部署的全链路模型服务,用户可弹性按需调用算力,无需关心底层架构。训练过程可视化,还可自动评测模型质量,并与其他模型对比。

对希望打造RAG应用的企业,百炼支持Assistant API开发模式,可在百炼上轻松创建知识库,并一键开启知识检索增强(RAG),通过Assistant API联合输出。同时,百炼支持agent智能体开发,并能实现多智能体协作、对话记忆等高级功能。

阿里云百炼的一大重要优势,在于最大程度的开放性和自由度。当下一些大模型应用平台采用封闭链路,不支持替换原子能力,导致企业开发应用时无法引入自研插件,和业务场景充分融合。

百炼率先兼容并优化了LlamaIndex等开源架构,拥抱社区生态,支持从本地或不同云端导入SQL、pdf、excel、ppt等各种类型数据源,还支持根据需求自由替换精细的能力组件,让AI应用丝滑嵌入企业原有业务系统。

周靖人表示,接下来,百炼将继续做对开发者最友好、最开放的大模型平台。阿里云欢迎更多大模型上架,百炼将进一步支持三方模型的微调训练和云上专属部署,帮助大模型生态中的企业提供商业化服务。

据了解,阿里云百炼发布半年来,已服务一汽、微博、完美世界、朗新集团、央视网、蓝凌科技等众多企业。例如,一汽红旗在百炼上调用通义千问和大模型分析能力打造了专属BI智能体,管理人员可随时让大模型生成销售额图表,并分析相关情况。

<think>好的,我现在需要帮助用户了解如何在阿里云百炼平台上训练定制化模型。首先,我应该回顾用户提供的引用内容,看看里面有没有相关的信息。 根据引用[1],阿里云百炼已经在多个业展示出赋能能力,并且提到帮助用户构建专属模型和应用优化。引用[2]详细介绍了百炼的功能,包括支持第三方模型接入、提供模型定制能力,以及通过API和可视化工具简化流程。还提到模型中心、数据中心、权限管理等模块。 接下来,我需要整理出训练定制化模型的具体步骤。首先,可能需要注册并登录平台,然后进入模型定制模块。根据引用中的信息,百炼提供了Prompt优化、知识库管理、函数调用等功能,这些可能和模型训练相关。另外,数据准备是关键,可能需要使用平台的数据中心工具来处理数据,比如清洗、标注等。然后选择基础模型,可能支持预训练模型或者第三方模型。之后进参数调整,比如学习率、训练轮次等,可能通过可视化界面配置。训练完成后进验证,并部署到模型中心。另外,引用中还提到支持业定制化模型,可能需要选择适合的业模板。 还要考虑用户可能的后续问题,比如数据安全如何保障,训练需要多长时间,或者是否需要编程基础。因此,在回答中需要涵盖这些点,或者在相关问题里提出。 现在需要确保回答结构清晰,分步骤明,并且引用对应的引用标记。同时,按照用户要求,使用中文,正确应用LaTeX格式,比如变量用$...$,独立公式用$$...$$,但在这个问题中可能涉及数学公式较少,不过如果有的话需要注意。例如,如果提到模型训练中的损失函数,可能需要用$$L = \frac{1}{N}\sum_{i=1}^N (y_i - \hat{y}_i)^2$$这样的格式。 最后生成相关问题,可能包括数据安全、训练时间、是否需要编程、业模型选择等。确保每个引用来源正确标注,比如在提到数据保护时引用[2],提到应用时引用[1]等。 总结步骤: 1. 准备工作:注册账号,进入控制台。 2. 数据准备:使用数据中心工具处理数据,确保质量和标注。 3. 模型选择:选择预训练模型或第三方模型作为基础。 4. 参数配置:通过可视化界面调整超参数。 5. 训练与调优:启动训练,监控指标,使用Prompt优化工具。 6. 验证部署:测试模型性能,部署到生环境。 7. 权限管理:设置团队协作和权限。 需要检查是否符合用户的所有要求,包括结构、引用、LaTeX格式等。现在将这些整理成回答。</think>### 如何在阿里云百炼大模型平台训练定制化模型? 阿里云百炼提供了一套完整的工具链和基础设施,支持用户高效训练定制化模型。以下是具体步骤: --- #### **1. 准备工作** - **注册并登录平台**:进入阿里云百炼控制台,完成账号注册与权限配置[^2]。 - **选择模型类型**:根据需求选择文本、图像或多模态模型类型,平台支持通义千问商业版API及第三方模型(如DeepSeek-V3)的接入[^2]。 --- #### **2. 数据准备** - **上传数据集**:通过**数据中心**模块上传标注数据,支持结构化数据(如CSV、JSON)和非结构化数据(如文本、图片)。 - **数据预处理**:使用内置工具进数据清洗、去噪和增强,例如通过正则表达式过滤无效文本,或调用图像裁剪函数$f(x,y) = \text{crop}(I, x, y)$。 - **构建知识库**:将业知识或私有数据导入知识库,用于后续模型训练中的检索增强(Retrieval-Augmented Generation, RAG)[^1]。 --- #### **3. 模型选择与配置** - **选择基础模型**:从**模型中心**选择预训练模型(如通义千问)作为基础,或导入第三方模型[^2]。 - **配置训练参数**: - 通过可视化界面设置超参数(如学习率$\eta=0.001$、训练轮次$T=100$)。 - 定义损失函数,例如交叉熵损失: $$L = -\frac{1}{N}\sum_{i=1}^N \sum_{c=1}^C y_{ic} \log(p_{ic})$$ - 启用分布式训练加速(需配置GPU资源)[^2]。 --- #### **4. 训练与调优** - **启动训练任务**:提交任务后,平台会自动分配计算资源并监控训练进度。 - **Prompt优化**:使用内置的Prompt自动优化工具调整输入指令,提升模型输出质量。 - **模型微调**:通过少量领域数据(如医疗问答对)进微调,增强模型在垂直场景的表现。 --- #### **5. 验证与部署** - **性能评估**:使用验证集测试模型准确率、召回率等指标,并通过A/B测试对比基线模型。 - **部署模型**:将训练好的模型发布至**模型中心**,生成API接口供业务系统调用。 - **持续监控**:利用平台观测功能分析模型推理延迟、资源占用等运时指标。 --- #### **6. 权限与协作管理** - 通过企业级权限系统控制模型访问权限,确保数据与模型的安全性。 - 支持团队协作开发,例如多人共同调试训练流水线。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值