快速掌握AI算法基础:AI产品经理的“共同语言”入门指南

前言

作为AI产品经理,常会被问到核心竞争力是什么,除了深度理解业务场景和专业的产品能力,掌握必要的AI算法知识是AI产研沟通的“共同语言基础”,所以市面上很多AI产品招聘的的条件都是算法专业。

然而对于非相关专业的AI产品或者想要转型AI产品的同学,算法知识晦涩难懂,如何用很短的时间快速入门,让你在AI领域更加游刃有余。

Q:机器学习、深度学习、强化学习定义及经典算法归类

机器学习是一种利用算法来让计算机从数据中学习并改进的技术。它通过对大量数据进行训练,使计算机能够自动地发现数据中的规律和模式,并用这些规律和模式来预测新的数据或做出决策。经典算法归类:

归因算法:线性回归、逻辑回归等。线性回归是一种通过找到最佳拟合直线来预测连续数值输出的算法。逻辑回归则是一种用于二分类问题的算法,它通过对输入特征进行逻辑函数变换来预测样本属于某一类别的概率。

分类算法:决策树、朴素贝叶斯、支持向量机等。决策树是一种基于树形结构的分类算法,它通过递归地划分数据集来构建分类模型。朴素贝叶斯是一种基于贝叶斯定理的分类算法,它假设特征之间相互独立,从而简化了分类问题的计算。支持向量机是一种二分类算法,它通过找到最优超平面来将不同类别的样本分开。

深度学习:机器学习的一个分支,它使用深度神经网络来模拟人脑的学习过程。深度神经网络是一种具有多层非线性变换的神经网络,能够自动地提取输入数据的特征,并逐层抽象出高级别的表示。经典算法归类:

神经网络:深度学习的核心算法是神经网络,包括前馈神经网络、卷积神经网络、循环神经网络等。前馈神经网络是一种最简单的神经网络形式,它通过多层感知器来实现输入到输出的映射。卷积神经网络则是一种专门用于处理图像数据的神经网络,它通过卷积层和池化层来提取图像特征。循环神经网络则是一种用于处理序列数据的神经网络,它通过记忆单元来捕捉序列中的时序信息。

强化学习:是一种让智能体通过与环境交互来学习策略的技术。在强化学习中,智能体通过感知环境状态并采取行动来获得奖励或惩罚,并根据这些反馈来调整自己的策略,以最大化累积奖励。经典算法归类:

值迭代算法:Q-Learning、SARSA等。这些算法通过估计每个状态-动作对的价值来找到最优策略。Q-Learning是一种离策略算法,它使用最大的预期奖励来更新Q值。SARSA则是一种在策略算法,它使用实际采取的行动来更新Q值。

策略梯度算法:REINFORCE、Actor-Critic等。这些算法直接对策略进行参数化,并通过梯度上升来最大化期望奖励。REINFORCE是一种基于蒙特卡罗采样的策略梯度算法,它使用奖励的累积和来更新策略参数。Actor-Critic则是一种结合了值函数和策略梯度的算法,它同时使用值函数来估计状态值,并使用策略梯度来更新策略参数。

Q:算法、算子和模型的定义和区别

1. 定义

算法:是一组明确规定的计算步骤,用于解决特定类型的问题或执行特定类型的计算。算法通常独立于任何特定的编程语言,但可以用任何编程语言来实现。

算子:在深度学习中,算子通常指的是一种特殊的函数或操作,用于对张量(多维数组)执行某种计算。这些计算可以是线性的、非线性的或其他类型的数学运算。

模型:在机器学习和深度学习中,模型是一个通过学习过程从数据中得出的表示。这个表示可以是数学方程、决策树、神经网络或其他形式,用于对新数据进行预测或分类。

2. 用途

算法:用于指导计算机如何解决问题或执行计算。算法本身不存储数据,但可以对输入的数据进行操作以产生输出。

算子:在深度学习中,算子被用来构建神经网络层和执行各种数学运算,以便从输入数据中学习有用的表示。

模型:模型是从数据中学习得出的,用于对新数据进行预测或分类。模型可以看作是一种“知识”的表示,它捕获了从训练数据中学习到的模式和关系。

3. 灵活性

算法:通常是固定的,但可以通过调整参数或选择不同的算法来优化性能。

算子:在深度学习中,可以通过组合不同的算子和层来创建各种复杂的神经网络结构。

模型:模型的结构和参数可以在训练过程中进行调整,以便更好地拟合数据。

总之,算法、算子和模型在机器学习和深度学习中各自扮演着不同的角色。算法提供了一组计算步骤来解决问题;算子在深度学习中用于执行数学运算和构建神经网络;而模型则是从数据中学习得出的表示,用于对新数据进行预测或分类。

学习资料分享

尽管市面上已经存在大量关于人工智能技术的资料,但专门针对如何成为和做好AI产品经理的系统化教学体系却寥寥无几。能够提供从产品理念到实施细节,乃至行业大牛全程指导的课程更是罕见。这不仅加大了产品经理学习的难度,也限制了他们在这个领域的成长速度。

因此特意给大家准备了一份涵盖了AI大模型入门学习思维导图、AI产品经理入门到进阶学习资料、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频 全系列的学习资料。这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。

适合哪些同学来学习?
  • 有转行意向的0基础职场人:不满现状,想转行产品经理,不知道从哪里下手;
  • 刚入行产品的产品新人:没人教没人带,缺乏方法论,想完善自己的产品知识体系;
  • 想往产品方向发展的学生:想以产品经理作为职业生涯的开始,却不知道怎么学。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、大模型的学习路线

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

二、产品经理学习资料

在这里插入图片描述

三、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

四、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

五、AI大模型商业化落地方案

img

六、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值