如何采用临床数据优化大语言模型的诊断能力?看完这一篇你就懂了!!

背景

大语言模型(LLMs)如GPT-4、MedPaLM-2 和 Med-Gemini 等在多个医学基准测试中的表现已经能够与人类专家竞争。然而,它们在模拟医生专业诊断过程中仍面临诸多挑战,特别是在高效收集病患信息并进行逻辑推理方面。当前,LLMs 对疾病的分类过于粗略,并且在专业领域的诊断逻辑一致性方面存在不足。例如,LLMs 有时会在缺乏足够信息支持的情况下提出诊断假设,或者忽略之前的回答,这使得它们的应答质量不尽如人意。此外,LLMs 还在遵循医学实践中的严格专业准则和标准方面存在困难。

为了克服这些问题,研究人员提出了 RuleAlign 框架,旨在将大语言模型与特定的诊断规则对齐,以提高其作为“AI 医生”的能力。RuleAlign 通过引入基于规则的医患对话数据集,帮助模型更好地学习诊断规则,从而改善诊断的逻辑性和有效性。

方法

为了实现上述目标,研究人员开发了一个医疗对话数据集,包含基于规则的医患沟通内容,并设计了一种通过偏好学习进行的对齐学习方法。具体步骤如下:

  • 诊断指南的总结

  • 首先,研究人员会查阅医学文献、标准化诊断指南以及实际的医疗记录,来收集与目标疾病相关的诊断信息。这些信息包括各种病症的典型症状、检查方式、以及诊断的关键标准等。

  • 对症状和检查的系统化分类

  • 在收集到这些信息后,研究人员会对其进行系统化分类,确定每种疾病的主要症状、检查方式以及病史的询问顺序。例如,泌尿系统的诊断规则可能包括检查如尿常规、影像学检查、病史询问(如是否有高血压或糖尿病史)等内容。

  • 基于规则的数据集生成

  • 研究人员使用这些收集到的诊断规则生成对话数据集。这个过程通过总结对话中的症状描述以及医生的询问逻辑,确保模型生成的对话符合医学标准。例如,利用 GPT-4 turbo API 生成的对话,不仅包括对患者症状的询问,还对诊断逻辑进行了调整,以确保符合规则。

  • 专业医生的验证

  • 最后,生成的数据集会由专业医生进行审核,确保规则的准确性和对话的合理性。医生会检查对话中的诊断步骤是否符合医学标准,并确保每个询问和诊断逻辑的一致性和科学性。

  • 偏好学习

  • 在模型的训练过程中,研究人员采用了偏好学习的方法,结合诊断规则数据集进行对齐学习。首先通过监督微调(SFT)对模型进行初步训练,然后利用偏好对模型进行进一步优化。偏好对的构建基于模型在不同情况下的表现,通过自动生成和优化偏好数据,使得模型能够更好地遵循诊断规则并提高诊断过程的效率和准确性。

  • RuleAlign 优化

  • 为解决偏好数据的一致性问题,RuleAlign 引入了对话次序的扰乱和语义相似性过滤的策略来优化偏好数据。通过这样的优化,确保了不满意的生成结果能够更有效地用于模型学习,从而提高模型的对齐效果。

结果

研究人员在不同的评价场景中对 RuleAlign 进行了实验,并取得了显著的效果。在单轮测试中,RuleAlign 在多个评价指标上(如困惑度、ROUGE 和 BLEU 分数等)均表现优异。此外,RuleAlign 通过对模型进行基于规则的对齐学习,使得模型的生成结果更加自然和准确。

在标准化病人(SP)测试中,RuleAlign 展示了多维度上与真实诊断的接近程度,包括信息的完整性、指导的合理性、诊断的逻辑性、临床适用性等方面都有显著提高。然而,在治疗逻辑性方面,由于缺乏相应的治疗知识强化,各方法的表现并未表现出显著差异。此外,RuleAlign 仍存在与真实医生提供的最终准确诊断和治疗建议存在一定差距的问题。

结论

研究表明,RuleAlign 可以显著提高大语言模型在医学诊断中的表现,通过基于诊断规则的数据集对齐学习,模型能够更有效地遵循诊断过程中的逻辑和准则。实验结果证明了 RuleAlign 在单轮测试和多轮标准病人测试中的有效性。研究人员希望 RuleAlign 能够为未来的大语言模型在医学应用中的进一步研究提供启发和帮助,使其逐步成为合格的“AI 医生”。

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值