一.为什么要进行降维?
在进行分类的时候我们需要大量的特征来提高分类器的准确度,但是分类器的性能随着随着维度的增加,逐步上升,达到某点其性能便逐渐下降。
为了避免性能下降的情况,我们要进行降低维度的处理。
数据的特征分量之间往往存在一些关联,如一个网站的访问量和网站的用户之间有一定的关联,一个淘宝店的下单数和成交数有一定关联。我们通过将两个有相关关系的特征进行筛选,删除一些,来降低机器学习算法的复杂度。
但是我们删除那些信息损失最小?如何度量丢失的信息?
二.降维原理、PCA算法
1.规范化d维的数据集
2.构建协方差矩阵:
数学解释:一个字段的方差可看作,每个元素与字段均值的差的平方和的均值,我们将字段均值化为零,问题被形式化表述为:寻找一个基,使得所有数据变换为这个基上的坐标后,方差值最大,来表示降维后数据分散。
对于更高位,我们在完成了第一个投影方向的选择后,还要选择第二个投影方向,为了表示更多的原始信息,我们希望他们之间不存在(线性)相关性。数学上用协方差表示相关性,我们设置字段均值为零
<