人工智能(2)- 学习主成成分分析(PCA)进行降维

本文探讨了降维的必要性,避免因维度增加导致的分类器性能下降。介绍了PCA(主成分分析)算法的原理,包括规范化数据、构建协方差矩阵、寻找最大化方差的基。通过PCA,可以将数据从高维降至低维,同时保持大部分信息。文章还展示了使用scikit-learn实现PCA的过程,通过实例说明PCA在实际应用中的效果。
摘要由CSDN通过智能技术生成

一.为什么要进行降维?

    在进行分类的时候我们需要大量的特征来提高分类器的准确度,但是分类器的性能随着随着维度的增加,逐步上升,达到某点其性能便逐渐下降。

   为了避免性能下降的情况,我们要进行降低维度的处理。

    数据的特征分量之间往往存在一些关联,如一个网站的访问量和网站的用户之间有一定的关联,一个淘宝店的下单数和成交数有一定关联。我们通过将两个有相关关系的特征进行筛选,删除一些,来降低机器学习算法的复杂度。

    但是我们删除那些信息损失最小?如何度量丢失的信息?

二.降维原理、PCA算法    
    1.规范化d维的数据集

    2.构建协方差矩阵:

    数学解释:一个字段的方差可看作,每个元素与字段均值的差的平方和的均值,我们将字段均值化为零,问题被形式化表述为:寻找一个基,使得所有数据变换为这个基上的坐标后,方差值最大,来表示降维后数据分散。

   

    对于更高位,我们在完成了第一个投影方向的选择后,还要选择第二个投影方向,为了表示更多的原始信息,我们希望他们之间不存在(线性)相关性。数学上用协方差表示相关性,我们设置字段均值为零

   

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值