深度学习中的epochs、batch_size、iterations详解

转载请注明出处:http://blog.csdn.net/gamer_gyt
博主微博:http://weibo.com/234654758
Github:https://github.com/thinkgamer
公众号:搜索与推荐Wiki

个人网站:http://thinkgamer.github.io

深度学习中涉及到很多参数,如果对于一些参数不了解,那么去看任何一个框架都会有难度,在TensorFlow中有一些模型训练的基本参数,这些参数是训练模型的前提,也在一定程度上影响着模型的最终效果。下面主要介绍几个参数。

  • batch_size
  • iterations
  • epochs

batch_size

深度学习的优化算法,其实就是梯度下降,在之前的文章中我们也介绍过梯度下降,这里就不详细说明。梯度下降分为三种:

  • 批量梯度下降算法(BGD,Batch gradient descent algorithm)
  • 随机梯度下降算法(SGD,Stochastic gradient descent algorithm)
  • 小批量梯度下降算法(MBGD,Mini-batch gradient descent algorithm)

批量梯度下降算法,每一次计算都需要遍历全部数据集,更新梯度,计算开销大,花费时间长,不支持在线学习。

随机梯度下降算法,每次随机选取一条数据,求梯度更新参数,这种方法计算速度快,但是收敛性能不太好,可能在最优点附近晃来晃去,hit不到最优点。两次参数的更新也有可能互相抵消掉,造成目标函数震荡的比较剧烈。

为了克服两种方法的缺点,现在一般采用的是一种折中手段,mini-batch gradient decent,小批的梯度下降,这种方法把数据分为若干个批,按批来更新参数,这样,一个批中的一组数据共同决定了本次梯度的方向,下降起来就不容易跑偏,减少了随机性。另一方面因为批的样本数与整个数据集相比小了很多,计算量也不是很大。

tf框架中的batch_size指的就是更新梯度中使用的样本数。当然这里如果把batch_size设置为数据集的长度,就成了批量梯度下降算法,batch_size设置为1就是随机梯度下降算法。

iterations

迭代次数,每次迭代更新一次网络结构的参数。

迭代是重复反馈的动作,神经网络中我们希望通过迭代进行多次的训练以到达所需的目标或结果。

每一次迭代得到的结果都会被作为下一次迭代的初始值。

一个迭代 = 一个(batch_size)数据正向通过(forward)+ 一个(batch_size)数据反向(backward)

神经网络

前向传播:构建由(x1,x2,x3)得到Y(hwb(x))的表达式

反向传播:基于给定的损失函数,求解参数的过程

epochs

epochs被定义为前向和反向传播中所有批次的单次训练迭代。这意味着1个周期是整个输入数据的单次前向和反向传递。

简单说,epochs指的就是训练过程中数据将被“轮”多少次

例如在某次模型训练过程中,总的样本数是10000,batch_size=100,epochs=10,其对应的伪代码如下:

data = 
batch_size = 100
for i in range(epochs):
    for j in range(int(data_length / batch_size - 1)):
        x_data = data[begin:end, ]
        y_data = data[begin:end, ]
        mode.train(x_data, y_data)
        begin += batch_size
        end += batch_size

其中iterations = data_length / batch_size


【技术服务】,详情点击查看: https://mp.weixin.qq.com/s/PtX9ukKRBmazAWARprGIAg

扫一扫 关注微信公众号!号主 专注于搜索和推荐系统,尝试使用算法去更好的服务于用户,包括但不局限于机器学习,深度学习,强化学习,自然语言理解,知识图谱,还不定时分享技术,资料,思考等文章!


<think>我们正在讨论BatchSize深度学习或数据处理中的定义和作用。根据引用[2],BatchSize指的是在训练深度学习模型时,一次迭代(iteration)中使用的样本数量。例如,如果总共有49000个样本,BatchSize=100,那么训练一轮(epoch)需要490次迭代(因为49000/100=490)。总的迭代次数(iteration)等于epoch乘以每轮的迭代次数。 BatchSize的作用: 1. **内存利用率**:BatchSize决定了每次迭代加载到内存中的样本数量。较大的BatchSize可以更有效地利用GPU的并行计算能力,但也会增加内存消耗。 2. **训练速度**:较大的BatchSize意味着每次迭代处理更多数据,因此可以减少完成一个epoch所需的迭代次数,从而加快训练速度。然而,过大的BatchSize可能导致每次迭代的时间变长。 3. **模型收敛和泛化**:较小的BatchSize可能提供更多的权重更新次数(因为迭代次数多),有助于模型收敛到更优的解,并且可能具有更好的泛化能力。但是,过小的BatchSize可能导致训练不稳定。较大的BatchSize可能会使梯度估计更准确(因为使用更多样本计算梯度),但可能导致模型陷入局部最优。 调整BatchSize时,通常需要同时调整学习率。引用[1]提到,当增加BatchSize时,通常也会增加学习率。这是因为更大的BatchSize会降低梯度的方差,因此可以使用更大的学习率而不会导致训练不稳定。 总结: - **定义**:BatchSize是每次迭代(iteration)用于更新模型权重的样本数量。 - **作用**:影响内存使用、训练速度、模型收敛性和泛化能力。 现在,我们可以生成一些相关问题来帮助用户深入理解。 §§相关问题§§ 1. 如何根据硬件条件选择合适的BatchSize? 2. BatchSize与学习率之间的关系是什么?如何同时调整它们? 3. 为什么小BatchSize有时能提高模型的泛化能力? 4. 在分布式训练中,BatchSize的设置有什么不同?</think>### BatchSize 的定义与作用详解 #### 一、BatchSize 的定义 **BatchSize(批量大小)** 指在深度学习模型训练或数据处理中,**单次迭代(iteration)输入模型的样本数量**。其数学表示为: $$ \text{BatchSize} = |D_{\text{batch}}| $$ 其中 $D_{\text{batch}}$ 是每次迭代从数据集中抽取的样本子集。 #### 二、核心作用解析 1. **内存与计算效率优化** - 内存层面:BatchSize 决定单次加载到显存/内存的数据量。例如 BatchSize=32 时,显存占用远低于 BatchSize=1024 - 计算层面:GPU 的并行计算单元利用率随 BatchSize 增大而提升。实验表明 BatchSize 从 16 增至 128 时,GPU 利用率可从 40% 升至 85%[^1] 2. **梯度计算与模型收敛** - 梯度更新公式:$$\theta_{t+1} = \theta_t - \eta \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla \mathcal{L}(x_i; \theta_t)$$ 其中 $N$ 即 BatchSize,$\eta$ 为学习率 - 小 BatchSize(如 32):梯度噪声大,模型探索能力强,可能跳出局部最优 - 大 BatchSize(如 1024):梯度估计更稳定,但易陷入平坦区域导致早停 3. **泛化能力的影响机制** | BatchSize | 训练稳定性 | 泛化能力 | 适用场景 | |-----------|------------|----------|----------| | 小 (8~64) | 低 | 高 | 小数据集/复杂模型 | | 中 (128~512) | 中 | 中 | 常规任务 | | 大 (>1024) | 高 | 低 | 大数据集/简单模型 | > 小 BatchSize 通过引入梯度噪声起到正则化效果,提升模型泛化性[^1] 4. **与其他训练参数的关系** - **学习率 $\eta$**:需满足 $\eta \propto \sqrt{\text{BatchSize}}$ 以保持更新步长一致 ```python # 学习率随BatchSize缩放示例 base_lr = 0.1 scaled_lr = base_lr * (batch_size / 256)**0.5 # 基准BatchSize=256 ``` - **Epoch数量**:固定数据集时,BatchSize 与迭代次数成反比:$$\text{Iterations} = \frac{\text{Total Samples}}{\text{BatchSize}} \times \text{Epochs}$$ #### 三、典型场景应用 1. **计算机视觉(CNN)** - ImageNet 训练:常用 BatchSize=256~1024 - 目标检测:受显存限制,BatchSize 通常为 2~16 2. **自然语言处理(Transformer)** - BERT 预训练:BatchSize=2048(需分布式训练) - 微调任务:BatchSize=32~64 3. **数据处理流水线** ```python # TensorFlow 数据管道示例 dataset = tf.data.Dataset.from_tensor_slices(data) dataset = dataset.batch(batch_size=128) # 设置BatchSize ``` #### 四、选择BatchSize的实践建议 1. **硬件约束优先**: - GPU显存限制:`最大BatchSize ≤ 显存容量 / 单样本内存` - 分布式训练:总BatchSize = 单卡BatchSize × GPU数量 2. **收敛性调优**: - 初始值:从 32/64/128 中选基准 - 调整策略:BatchSize 翻倍时,学习率增加 $\sqrt{2}$ 倍[^1] 3. **极端情况处理**: - 显存不足时:使用梯度累积(Gradient Accumulation)模拟大Batch ```python for i, (x, y) in enumerate(dataloader): loss = model(x, y) loss.backward() if (i+1) % k == 0: # 每k个mini-batch更新一次 optimizer.step() optimizer.zero_grad() ``` > **经验法则**:在保证显存不溢出的前提下,选择能最大化GPU利用率的BatchSize,并通过学习率缩放维持收敛性[^1][^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值