模型微调参数2——epochs

epochs 是指整个数据集被用于训练模型的次数。每个 epoch 都意味着模型已经看过整个训练数据集一次,并且更新了模型参数。

详细解释

  1. Epoch

    • 定义:一个 epoch 是一次完整的训练数据集通过模型进行前向传播和反向传播的过程。
    • 重要性:使用多个 epochs 可以确保模型充分学习到数据集中的模式和特征。一个 epoch 通常不足以使模型收敛(即达到最佳性能),因此通常需要多个 epochs
  2. 与 Iterations(迭代) 的区别

    • Iteration(迭代):每个 iteration 是一次通过 batch(批次)进行模型参数更新的过程。每个 batch 是训练数据集的一小部分。
    • 一个 epoch 通常由多次 iterations 组成,具体数量取决于 batch size 和训练数据集的大小。

关系

假设有以下情况:

  • 训练数据集包含 1000 个样本。
  • batch size 设置为 100。
  • 训练过程使用 10 个 epochs

在这种情况下:

  • 每个 epoch 将包含 10 个 iterations(因为 1000 / 100 = 10)。
  • 整个训练过程将包含 10 个 epochs,即 100 次 iterations(10 个 epochs × 10 个 iterations)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值