The Wavelet Lifting Scheme



The Wavelet Lifting Scheme

At the beginning of my journey, I was naive. I didn't yet know that answers vanish as one continues to travel, that there is only further complexity, that there are still more interrelationships, and more questions.

Robert D. Kaplan, The Ends of the Earth: a journey to the frontiers of anarchy, Vintage Press, 1996

Wavelets and Their Applications

Wavelets have been applied in a wide range of areas. My interest in wavelets came from digital signal processing of non-stationary time series (see my web page Applying the Haar Wavelet Transform to Time Series Information). Data sets without obviously periodic components cannot be processed well using Fourier techniques. Wavelets allow complex filters to be constructed for this kind of data which can remove or enhance selected parts of the signal. There is a growing body of literature on wavelet techniques for noise reduction.

Wavelets have been used for data compression. For example, the United States FBI compresses their fingerprint data base using wavelets. Lifting scheme wavelets also form the basis of the emerging JPEG 2000 image compression standard.

Wavelet techniques have also been used in a variety of statistical applications, including signal variance estimation, frequency analysis and kernel regression.

The coverage of most of these topics requires a book length discussion and is way beyond the scope of these humble web pages.

What These Web Pages Contribute

There is a large and growing literature on wavelets ranging from papers in mathematical journals to applied areas like artificial intelligence (neural nets) and geology. Frequently mathematics papers deal with wavelets applied to an infinite series of data. This leaves a large gap between theory and practice. In the case of papers that apply wavelets, I often get the impression that many of the authors are using existing wavelet functions in Mathematica or MathLab. These articles often include the standard integral expression for wavelets on an infinite data series, but the complexities of wavelet implementation are not discussed.

The fact that the authors of a journal article applying wavelet analysis to the study of the geology of karsts, aquifers and water flow do not implement the wavelet algorithms themselves is understandable. I have spent months studying wavelets and I still feel that I have far to go. I am sure that there are are mathematical depths to wavelets that I will never understand. Compared with theoretical papers on wavelets, there is much less material on applying wavelets to real problems. As someone who has implemented wavelet algorithms in Java and C++, I have found the gap between theory and application frustrating. In the few cases where I have found wavelet software source code, it has provided little illumination. The software was not clearly written and I did not understand it until I already understood the wavelet algorithm that it implemented.

Wavelet techniques are remarkably powerful and general. Applying wavelet techniques is also surprisingly complicated (there are times when I find myself longing to the simplicity of the Fourier transform). I hope that this web page will fill some of the gap between wavelet theory and application. I am a software engineer with rather modest skills in mathematics. This web page provides an applied view of wavelet algorithms through the lens of the Lifting Scheme. I have tried to provide clearly written software that implements the algorithms I discuss.

The mathematically sophisticated may look at this web page as a "kindergarten" view of wavelets and mathematics. In most cases I list even simple algebraic steps in deriving an equation. This reflects the humble skills of the author of these web pages. For those who find the material on these web pages trivial, I suggest going directly to the wavelet literature where the reader may find far more sophistication.

Sadly this web page is drastically incomplete. In such a short discussion I cannot completely cover the wavelet mathematics which underlies these algorithms. To do so would require a book, not a web page or two. These web pages are best read along with the references listed at the end.

Perfect Reconstruction in an Finite World

One of the features of wavelets that is critical in areas like signal processing and compression is what is referred to in the wavelet literature as perfect reconstruction. A wavelet algorithm has perfect reconstruction when the inverse wavelet transform of the result of the wavelet transform yields exactly the original data set:

  IWT( WT( D ) ) = D
(Here  IWT  is the inverse wavelet transform and  WT  is the wavelet transform.)

If the wavelet literature is any guide, when mathematicians think about and write about wavelets equations, they think about wavelets applied to an infinite sequence of data. Many wavelet equations that have the property of perfect reconstruction for infinite data sequences do not have this property for finite data sequences. Since sound files, financial time series, images and other data sets to which wavelets are applied are finite this can be a problem. There are several methods proposed in the wavelet literature for dealing with the edges of finite data sets. See for example, my discussion of the Daubechies D4 wavelet transform.

The simplest wavelet algorithm that shows perfect reconstruction is the Haar wavelet algorithm. However, Haar wavelets can miss detail and do not always represent change at all resolution scales. See Limitations of the Haar Wavelet Transform.

Relative to the Haar wavelet algorithm, the Daubechies D4 algorithm shows better multi-scale resolution, at the cost of a more complex algorithm. Wim Sweldens' tutorialBuilding Your Own Wavlets at Home (see references, below) showed how Haar wavelets could be expressed in Lifting Scheme form and extended to provide accurate multiscale resolution. The Lifting Scheme provides a simpler view of many wavelet algorithms. The Lifting Scheme provides the basis for the book Ripples in Mathematics(referenced below). This book is the primary reference for these web pages.

Lifting Scheme Sub-pages

  • Predict Wavlets: wavelets viewed as compression

    The wavelet lifting scheme divides the wavelet transform into a set of steps. One of the elegant qualities of wavelet algorithms expressed via the listing scheme is the fact that the inverse transform is a mirror of the forward transform. The simplest way to start thinking about the lifting scheme is via a one step wavelet that I refer to as a "predict wavelet".

  • Basic Lifting Scheme Wavelets

    "Predict" wavelets are a good model for how wavelet algorithms can approximate a set of data with a function like polynomial interpolation. However, "predict" wavelets are missing one of the central features of wavelet algorithms: the data is not represented at multiple resolutions. By not performing an averaging step (called an update step in the lifting scheme), the differences stored in the predict step are larger than they need to be. Wavelet based algorithms like noise reduction (a.k.a. signal estimation) do not work well without an averaging step. The Basic Lifting Scheme Wavelets web page shows how each of the algorithms described by the "predict" wavelet page can be implemented as full wavelet algorithms with an averaging (update) step.

  • Lifting Scheme version of the Daubechies D4 Transform

    The first part of this web page discusses the "standard" version of the Daubechies D4 transform. The second part of the web page covers the lifting scheme version of the Daubechies D4 transform. The Lifting Scheme version is taken from Ripples in Mathematics.

References

  • Ripples in Mathematics: the Discrete Wavelet Transform by Arne Jense and Anders la Cour-Harbo, Springer, 2001

    This is the central reference for these web pages. Of the seven or so wavelet books I've worked with this is the best for my purposes (implementing wavelet algorithms). The book is clearly written and is light on proofs. The authors take an applied approach to wavelets, rather than approaching wavelet from a theoretical mathematics point of view.

  • Gabriel Fernandez has published an excellent bibliography on the lifting scheme wavelets which can be found here. This bibliography has a pointer to Wim Sweldens' and Peter Schroder's lifting scheme tutorial Building Your Own Wavelets at Home.

    Building Your Own Wavelets at Home is part of a course on Wavelets in Computer Graphics given at SigGraph 1994, 1995 and 1996. The sigGraph course covered an amazing amount of material. Building Your Own Wavelets at Home was apparently covered in a morning. There are a lot of mathematically gifted people in computer graphics. But even for these people, this looks like tough going for a morning. I've spent hours reading and rereading this tutorial before I understood it enough to implement the polynomial interpolation wavelets that it discusses. Although I found this tutorial a lot of work, it provided the central reference for the polynomial interpolation wavelets I discuss on my wavelet web pages.

Web Links

  • Ripples in Mathematics web page.

    This is the web page by the authors of Ripples in Mathematics. It includes links to a number of sub-pages, including pages that publish C source code for the algorithms discussed in the book.

  • The JPEG 2000 standard is based on Lifting Scheme wavelets. The JJ2000 web site contains links to various publications and reference Java code. I've had a hard time understanding which Lifting Scheme algorithm was used.

    For an industry standard it seems remarkably difficult to get any clear information on the standard. I could find very little information that explained the standard on thejpeg.org web site. The publications listed on the JJ2000 site were better.

    There is a book out, JPEG2000: Image Compression Fundamentals, Standards and Practice by Taubman and Marcellin, Kluwer Academic Publishers, November 2001. At the time of this writing this book was listed on Amazon for $125. Only those actually implementing the JPEG 2000 algorithm are likely to pay for a book this expensive.

Local Links

  • Wavelets and Signal Processing

    Main page for wavelets, the Fourier transform and signal processing.

  • Wavelets in Java

    This Web page collects all the links that allow the Java software source that implements the wavelet algorithms discussed on these web pages to be downloaded.


Ian Kaplan

The Wavelet Lifting Scheme

At the beginning of my journey, I was naive. I didn't yet know that answers vanish as one continues to travel, that there is only further complexity, that there are still more interrelationships, and more questions.

Robert D. Kaplan, The Ends of the Earth: a journey to the frontiers of anarchy, Vintage Press, 1996

Wavelets and Their Applications

Wavelets have been applied in a wide range of areas. My interest in wavelets came from digital signal processing of non-stationary time series (see my web page Applying the Haar Wavelet Transform to Time Series Information). Data sets without obviously periodic components cannot be processed well using Fourier techniques. Wavelets allow complex filters to be constructed for this kind of data which can remove or enhance selected parts of the signal. There is a growing body of literature on wavelet techniques for noise reduction.

Wavelets have been used for data compression. For example, the United States FBI compresses their fingerprint data base using wavelets. Lifting scheme wavelets also form the basis of the emerging JPEG 2000 image compression standard.

Wavelet techniques have also been used in a variety of statistical applications, including signal variance estimation, frequency analysis and kernel regression.

The coverage of most of these topics requires a book length discussion and is way beyond the scope of these humble web pages.

What These Web Pages Contribute

There is a large and growing literature on wavelets ranging from papers in mathematical journals to applied areas like artificial intelligence (neural nets) and geology. Frequently mathematics papers deal with wavelets applied to an infinite series of data. This leaves a large gap between theory and practice. In the case of papers that apply wavelets, I often get the impression that many of the authors are using existing wavelet functions in Mathematica or MathLab. These articles often include the standard integral expression for wavelets on an infinite data series, but the complexities of wavelet implementation are not discussed.

The fact that the authors of a journal article applying wavelet analysis to the study of the geology of karsts, aquifers and water flow do not implement the wavelet algorithms themselves is understandable. I have spent months studying wavelets and I still feel that I have far to go. I am sure that there are are mathematical depths to wavelets that I will never understand. Compared with theoretical papers on wavelets, there is much less material on applying wavelets to real problems. As someone who has implemented wavelet algorithms in Java and C++, I have found the gap between theory and application frustrating. In the few cases where I have found wavelet software source code, it has provided little illumination. The software was not clearly written and I did not understand it until I already understood the wavelet algorithm that it implemented.

Wavelet techniques are remarkably powerful and general. Applying wavelet techniques is also surprisingly complicated (there are times when I find myself longing to the simplicity of the Fourier transform). I hope that this web page will fill some of the gap between wavelet theory and application. I am a software engineer with rather modest skills in mathematics. This web page provides an applied view of wavelet algorithms through the lens of the Lifting Scheme. I have tried to provide clearly written software that implements the algorithms I discuss.

The mathematically sophisticated may look at this web page as a "kindergarten" view of wavelets and mathematics. In most cases I list even simple algebraic steps in deriving an equation. This reflects the humble skills of the author of these web pages. For those who find the material on these web pages trivial, I suggest going directly to the wavelet literature where the reader may find far more sophistication.

Sadly this web page is drastically incomplete. In such a short discussion I cannot completely cover the wavelet mathematics which underlies these algorithms. To do so would require a book, not a web page or two. These web pages are best read along with the references listed at the end.

Perfect Reconstruction in an Finite World

One of the features of wavelets that is critical in areas like signal processing and compression is what is referred to in the wavelet literature as perfect reconstruction. A wavelet algorithm has perfect reconstruction when the inverse wavelet transform of the result of the wavelet transform yields exactly the original data set:

  IWT( WT( D ) ) = D
(Here  IWT  is the inverse wavelet transform and  WT  is the wavelet transform.)

If the wavelet literature is any guide, when mathematicians think about and write about wavelets equations, they think about wavelets applied to an infinite sequence of data. Many wavelet equations that have the property of perfect reconstruction for infinite data sequences do not have this property for finite data sequences. Since sound files, financial time series, images and other data sets to which wavelets are applied are finite this can be a problem. There are several methods proposed in the wavelet literature for dealing with the edges of finite data sets. See for example, my discussion of the Daubechies D4 wavelet transform.

The simplest wavelet algorithm that shows perfect reconstruction is the Haar wavelet algorithm. However, Haar wavelets can miss detail and do not always represent change at all resolution scales. See Limitations of the Haar Wavelet Transform.

Relative to the Haar wavelet algorithm, the Daubechies D4 algorithm shows better multi-scale resolution, at the cost of a more complex algorithm. Wim Sweldens' tutorialBuilding Your Own Wavlets at Home (see references, below) showed how Haar wavelets could be expressed in Lifting Scheme form and extended to provide accurate multiscale resolution. The Lifting Scheme provides a simpler view of many wavelet algorithms. The Lifting Scheme provides the basis for the book Ripples in Mathematics(referenced below). This book is the primary reference for these web pages.

Lifting Scheme Sub-pages

  • Predict Wavlets: wavelets viewed as compression

    The wavelet lifting scheme divides the wavelet transform into a set of steps. One of the elegant qualities of wavelet algorithms expressed via the listing scheme is the fact that the inverse transform is a mirror of the forward transform. The simplest way to start thinking about the lifting scheme is via a one step wavelet that I refer to as a "predict wavelet".

  • Basic Lifting Scheme Wavelets

    "Predict" wavelets are a good model for how wavelet algorithms can approximate a set of data with a function like polynomial interpolation. However, "predict" wavelets are missing one of the central features of wavelet algorithms: the data is not represented at multiple resolutions. By not performing an averaging step (called an update step in the lifting scheme), the differences stored in the predict step are larger than they need to be. Wavelet based algorithms like noise reduction (a.k.a. signal estimation) do not work well without an averaging step. The Basic Lifting Scheme Wavelets web page shows how each of the algorithms described by the "predict" wavelet page can be implemented as full wavelet algorithms with an averaging (update) step.

  • Lifting Scheme version of the Daubechies D4 Transform

    The first part of this web page discusses the "standard" version of the Daubechies D4 transform. The second part of the web page covers the lifting scheme version of the Daubechies D4 transform. The Lifting Scheme version is taken from Ripples in Mathematics.

References

  • Ripples in Mathematics: the Discrete Wavelet Transform by Arne Jense and Anders la Cour-Harbo, Springer, 2001

    This is the central reference for these web pages. Of the seven or so wavelet books I've worked with this is the best for my purposes (implementing wavelet algorithms). The book is clearly written and is light on proofs. The authors take an applied approach to wavelets, rather than approaching wavelet from a theoretical mathematics point of view.

  • Gabriel Fernandez has published an excellent bibliography on the lifting scheme wavelets which can be found here. This bibliography has a pointer to Wim Sweldens' and Peter Schroder's lifting scheme tutorial Building Your Own Wavelets at Home.

    Building Your Own Wavelets at Home is part of a course on Wavelets in Computer Graphics given at SigGraph 1994, 1995 and 1996. The sigGraph course covered an amazing amount of material. Building Your Own Wavelets at Home was apparently covered in a morning. There are a lot of mathematically gifted people in computer graphics. But even for these people, this looks like tough going for a morning. I've spent hours reading and rereading this tutorial before I understood it enough to implement the polynomial interpolation wavelets that it discusses. Although I found this tutorial a lot of work, it provided the central reference for the polynomial interpolation wavelets I discuss on my wavelet web pages.

Web Links

  • Ripples in Mathematics web page.

    This is the web page by the authors of Ripples in Mathematics. It includes links to a number of sub-pages, including pages that publish C source code for the algorithms discussed in the book.

  • The JPEG 2000 standard is based on Lifting Scheme wavelets. The JJ2000 web site contains links to various publications and reference Java code. I've had a hard time understanding which Lifting Scheme algorithm was used.

    For an industry standard it seems remarkably difficult to get any clear information on the standard. I could find very little information that explained the standard on thejpeg.org web site. The publications listed on the JJ2000 site were better.

    There is a book out, JPEG2000: Image Compression Fundamentals, Standards and Practice by Taubman and Marcellin, Kluwer Academic Publishers, November 2001. At the time of this writing this book was listed on Amazon for $125. Only those actually implementing the JPEG 2000 algorithm are likely to pay for a book this expensive.

Local Links

  • Wavelets and Signal Processing

    Main page for wavelets, the Fourier transform and signal processing.

  • Wavelets in Java

    This Web page collects all the links that allow the Java software source that implements the wavelet algorithms discussed on these web pages to be downloaded.


Ian Kaplan

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值