自然语言处理—机器翻译(Machine Translation)

一、引言

机器翻译(Machine Translation, MT)是自然语言处理(Natural Language Processing, NLP)和人工智能(Artificial Intelligence, AI)领域的一个重要分支,它涉及使用计算机程序将一种语言的文本自动翻译成另一种语言的文本。

机器翻译的研究始于20世纪40年代晚期,随着计算机技术的发展,机器翻译经历了几个不同的发展阶段,包括基于规则的机器翻译(Rule-Based Machine Translation)、统计机器翻译(Statistical Machine Translation)和神经机器翻译(Neural Machine Translation)。下面我们将介绍应用编码器——解码器和注意力机制的机器翻译。

二、数据读取和预处理数据

我们先定义一些特殊符号。其中“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。

!tar -xf d2lzh_pytorch.tar

import collections  # 导入collections模块,用于创建有序字典等数据结构
import os  # 导入os模块,用于处理操作系统相关的操作,如环境变量设置
import io  # 导入io模块,用于处理输入输出流
import math  # 导入math模块,用于数学计算
import torch  # 导入torch模块,用于深度学习框架
from torch import nn  # 从torch模块中导入nn模块,用于构建神经网络
import torch.nn.functional as F  # 导入torch.nn.functional模块,并简写为F,用于实现神经网络中的激活函数等操作
import torchtext.vocab as Vocab  # 导入torchtext.vocab模块,并简写为Vocab,用于处理词汇表
import torch.utils.data as Data  # 导入torch.utils.data模块,并简写为Data,用于处理数据集

import sys  # 导入sys模块,用于处理系统相关的操作
# sys.path.append("..")  # 将上一级目录添加到系统路径中,以便导入其他模块
import d2lzh_pytorch as d2l  # 导入d2lzh_pytorch模块,并简写为d2l,用于实现深度学习算法

PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'  # 定义填充符、开始符和结束符
os.environ["CUDA_VISIBLE_DEVICES"] = "0"  # 设置可见的GPU设备为0号设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')  # 根据是否有可用的GPU设备,设置device为'cuda'或'cpu'

print(torch.__version__, device)  # 打印PyTorch版本和使用的设备(GPU或CPU)
1.5.0 cpu

接着定义两个辅助函数对后面读取的数据进行预处理。
# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    all_tokens.extend(seq_tokens)
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    all_seqs.append(seq_tokens)

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    return vocab, torch.tensor(indices)

为了演示方便,我们在这里使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。

max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]

结果:

(tensor([ 5,  4, 45,  3,  2,  0,  0]), tensor([ 8,  4, 27,  3,  2,  0,  0]))

三、含注意力机制的编码器—解码器

我们将使用含注意力机制的编码器—解码器来将一段简短的法语翻译成英语。下面我们来介绍模型的实现。

3.1编码器

在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中。正如我们在6.5节(循环神经网络的简洁实现)中提到的,PyTorch的nn.GRU实例在前向计算后也会分别返回输出和最终时间步的多层隐藏状态。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。注意力机制将这些输出作为键项和值项。

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
        return self.rnn(embedding, state)

    def begin_state(self):
        return None

下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state就是一个元素,即隐藏状态;如果使用长短期记忆,state是一个元组,包含两个元素即隐藏状态和记忆细胞。

encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
output.shape, state.shape # GRU的state是h, 而LSTM的是一个元组(h, c)

结果:

(torch.Size([7, 4, 16]), torch.Size([2, 4, 16]))

3.2注意力机制

将输入连结后通过含单隐藏层的多层感知机变换。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。两个Linear实例均不使用偏差。其中函数𝑎𝑎定义里向量𝑣𝑣的长度是一个超参数,即attention_size

def attention_model(input_size, attention_size):
    model = nn.Sequential(nn.Linear(input_size, attention_size, bias=False),
                          nn.Tanh(),
                          nn.Linear(attention_size, 1, bias=False))
    return model

注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。

seq_len, batch_size, num_hiddens = 10, 4, 8
model = attention_model(2*num_hiddens, 10) 
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
dec_state = torch.zeros((batch_size, num_hiddens))
attention_forward(model, enc_states, dec_state).shape

结果:

torch.Size([4, 8])

3.3含注意力机制的解码器

我们直接将编码器在最终时间步的隐藏状态作为解码器的初始隐藏状态。这要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数。

在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

四、训练模型 

我们先实现batch_loss函数计算一个小批量的损失。解码器在最初时间步的输入是特殊字符BOS。之后,解码器在某时间步的输入为样本输出序列在上一时间步的词,即强制教学。我们在这里也使用掩码变量避免填充项对损失函数计算的影响。

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens

在训练函数中,我们需要同时迭代编码器和解码器的模型参数。 

def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    # 初始化编码器和解码器的优化器
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)

    # 定义损失函数
    loss = nn.CrossEntropyLoss(reduction='none')
    # 创建数据迭代器
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
    # 进行指定次数的训练迭代
    for epoch in range(num_epochs):
        l_sum = 0.0
        # 遍历数据集
        for X, Y in data_iter:
            # 清空梯度
            enc_optimizer.zero_grad()
            dec_optimizer.zero_grad()
            # 计算批次损失
            l = batch_loss(encoder, decoder, X, Y, loss)
            # 反向传播
            l.backward()
            # 更新编码器和解码器的参数
            enc_optimizer.step()
            dec_optimizer.step()
            # 累加损失值
            l_sum += l.item()
        # 每10个周期打印一次损失值
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

接下来,创建模型实例并设置超参数。然后,我们就可以训练模型了。

# 定义超参数
embed_size, num_hiddens, num_layers = 64, 64, 2  # 嵌入层大小、隐藏层大小和层数
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50  # 注意力大小、丢弃概率、学习率、批量大小和训练周期数

# 创建编码器和解码器实例
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers, drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers, attention_size, drop_prob)

# 调用train函数进行训练
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

结果:

epoch 10, loss 0.470
epoch 20, loss 0.218
epoch 30, loss 0.158
epoch 40, loss 0.167
epoch 50, loss 0.133

五、预测不定长的序列

这里我们实现最简单的贪婪搜索来生成解码器在每个时间步的输出。

def translate(encoder, decoder, input_seq, max_seq_len):
    # 将输入序列分割成单词列表
    in_tokens = input_seq.split(' ')
    # 添加EOS和PAD,使序列长度达到max_seq_len
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    # 将输入序列转换为张量
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) # batch=1
    # 初始化编码器状态
    enc_state = encoder.begin_state()
    # 编码器前向传播
    enc_output, enc_state = encoder(enc_input, enc_state)
    # 初始化解码器输入和状态
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    dec_state = decoder.begin_state(enc_state)
    # 初始化输出序列
    output_tokens = []
    # 循环生成输出序列
    for _ in range(max_seq_len):
        # 解码器前向传播
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        # 获取预测的单词索引
        pred = dec_output.argmax(dim=1)
        # 将索引转换为对应的单词
        pred_token = out_vocab.itos[int(pred.item())]
        # 如果预测出EOS,则结束输出序列的生成
        if pred_token == EOS:  # 当任一时间步搜索出EOS时,输出序列即完成
            break
        else:
            # 将预测的单词添加到输出序列中
            output_tokens.append(pred_token)
            # 更新解码器输入
            dec_input = pred
    # 返回输出序列
    return output_tokens

简单测试一下模型。输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”

结果:

['they', 'are', 'watching', '.']

六、评价翻译结果

评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)[1]。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。

具体来说,设词数为𝑛𝑛的子序列的精度为𝑝𝑛𝑝𝑛。它是预测序列与标签序列匹配词数为𝑛𝑛的子序列的数量与预测序列中词数为𝑛𝑛的子序列的数量之比。举个例子,假设标签序列为𝐴𝐴、𝐵𝐵、𝐶𝐶、𝐷𝐷、𝐸𝐸、𝐹𝐹,预测序列为𝐴𝐴、𝐵𝐵、𝐵𝐵、𝐶𝐶、𝐷𝐷,那么𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0。设𝑙𝑒𝑛label𝑙𝑒𝑛label和𝑙𝑒𝑛pred𝑙𝑒𝑛pred分别为标签序列和预测序列的词数,那么,BLEU的定义为

其中𝑘是我们希望匹配的子序列的最大词数。可以看到当预测序列和标签序列完全一致时,BLEU为1。

因为匹配较长子序列比匹配较短子序列更难,BLEU对匹配较长子序列的精度赋予了更大权重。例如,当𝑝𝑛𝑝𝑛固定在0.5时,随着𝑛𝑛的增大,0.51/2≈0.7,0.51/4≈0.84,0.51/8≈0.92,0.51/16≈0.960.51/2≈0.7,0.51/4≈0.84,0.51/8≈0.92,0.51/16≈0.96。另外,模型预测较短序列往往会得到较高𝑝𝑛𝑝𝑛值。因此,上式中连乘项前面的系数是为了惩罚较短的输出而设的。举个例子,当𝑘=2𝑘=2时,假设标签序列为𝐴𝐴、𝐵𝐵、𝐶𝐶、𝐷𝐷、𝐸𝐸、𝐹𝐹,而预测序列为𝐴𝐴、𝐵𝐵。虽然𝑝1=𝑝2=1𝑝1=𝑝2=1,但惩罚系数exp(1−6/2)≈0.14exp⁡(1−6/2)≈0.14,因此BLEU也接近0.14。

下面来实现BLEU的计算。

def bleu(pred_tokens, label_tokens, k):
    # 计算预测序列和标签序列的长度
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    
    # 初始化 BLEU 分数,使用短句惩罚项
    score = math.exp(min(0, 1 - len_label / len_pred))
    
    # 遍历 n-gram 范围
    for n in range(1, k + 1):
        # 初始化匹配数和标签子串计数器
        num_matches, label_subs = 0, collections.defaultdict(int)
        
        # 统计标签序列中 n-gram 的出现次数
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        
        # 遍历预测序列,计算匹配的 n-gram 数量
        for i in range(len_pred - n + 1):
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1
        
        # 更新 BLEU 分数,考虑 n-gram 的权重
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    
    return score

接下来,定义一个辅助打印函数。

def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

预测正确则分数为1。

score('ils regardent .', 'they are watching .', k=2)
结果:bleu 1.000, predict: they are watching .
score('ils sont canadienne .', 'they are canadian .', k=2)
结果:bleu 0.658, predict: they are russian .

七、小结

结合注意力机制的编码器-解码器架构可以带来以下优势:

  1. 更精准的翻译:注意力机制允许模型在翻译时考虑源句子的具体片段,从而更好地捕捉细微的语言差异和语境依赖。
  2. 处理长句子:对于较长的源语言句子,注意力机制能够提供一种方式来保持对重要信息的持续关注,而不是被迫压缩所有信息到单一向量中。
  3. 可解释性:注意力机制生成的权重矩阵可用于解释模型的决策过程,增强了模型的可解释性。

总的来说,编码器-解码器架构配合注意力机制,为机器翻译任务提供了强大的工具,极大地提升了翻译质量,尤其是对于复杂的语句结构和长距离依赖的处理。这种架构的成功应用也催生了其在其它序列到序列任务,如文本摘要、语音识别等的广泛使用。

  • 37
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值