整除 及 同余

整除

a a a非零整数 b b b整数

若存在一个整数q,使得b=a*q,则称之为b可以被a整除 记作 a ∣ b a|b ab

其中 b b b a a a的倍数, a a a b b b的约数(因子)

举例 : 2 ∣ 4 2|4 24 5 ∣ 10 5|10 510

###整除性质及证明

1. 如果 a ∣ b a|b ab b ∣ c b|c bc,则 a ∣ c a|c ac

  • 证明
    因为 a ∣ b a|b ab,所以设 k 1 = b / a k_1=b/a k1=b/a,同理设 k 2 = c / b k_2=c/b k2=c/b

    所以 b = a ∗ k 1 , c = b ∗ k 2 = a ∗ k 1 ∗ k 2 b=a*k_1,c=b*k_2=a*k_1*k_2 b=ak1,c=bk2=ak1k2

    a ∣ c = a ∣ a ∗ k 1 ∗ k 2 = k 1 ∗ k 2 a|c=a|a*k_1*k_2=k_1*k_2 ac=aak1k2=k1k2

    又因为 k 1 和 k 2 k_1和k_2 k1k2为整数,所以 a ∣ c a|c ac
    证毕

2. 如果 a ∣ b a|b ab a ∣ c a|c ac,任取 x , y ∈ Z x,y\in Z x,yZ a ∣ ( b ∗ x + c ∗ y ) a|(b*x+c*y) a(bx+cy)

  • 证明
    因为 a ∣ b a|b ab,所以设 k 1 = b / a k_1=b/a k1=b/a,同理设 k 2 = c / a k_2=c/a k2=c/a

    所以 b = a ∗ k 1 , c = a ∗ k 2 b=a*k_1,c=a*k_2 b=ak1,c=ak2

    a ∣ ( b ∗ x + c ∗ y ) = a ∣ ( a ∗ k 1 ∗ x + a ∗ k 2 ∗ y ) = a ∣ a ∗ ( k 1 ∗ x + k 2 ∗ y ) = k 1 ∗ x + k 2 ∗ y a|(b*x+c*y)=a|(a*k_1*x+a*k_2*y)=a|a*(k_1*x+k_2*y)=k_1*x+k_2*y a(bx+cy)=a(ak1x+ak2y)=aa(k1x+k2y)=k1x+k2y

    又因为 k 1 , k 2 , x , y k_1,k_2,x,y k1k2xy都为整数,所以 k 1 ∗ x + k 2 ∗ y k_1*x+k_2*y k1x+k2y即为整数

    综上 a ∣ ( b ∗ x + c ∗ y ) a|(b*x+c*y) a(bx+cy)
    证毕

3. 设 m ≠ 0 m≠0 m=0,则 a ∣ b a|b ab可推出 ( m ∗ a ) ∣ ( m ∗ b ) (m*a) | (m*b) (ma)(mb)

  • 证明

    因为 a ∣ b a|b ab,所以设 k 1 = b / a k_1=b/a k1=b/a,即 b = k 1 ∗ a b=k_1*a b=k1a

    ( m ∗ a ) ∣ ( m ∗ b ) = ( m ∗ a ) ∣ ( m ∗ k 1 ∗ a ) = k 1 (m*a)|(m*b)=(m*a)|(m*k_1*a)=k_1 ma(mb)=(ma)(mk1a)=k1

    又因为 k 1 k_1 k1为整数,所以 ( m ∗ a ) ∣ ( m ∗ b ) (m*a)|(m*b) (ma)(mb)
    证毕

4. ∀ x , y ∈ Z \forall x,y \in Z x,yZ 满足此式 a ∗ x + b ∗ y = 1 a*x+b*y=1 ax+by=1,又当 a ∣ n a|n an b ∣ n b|n bn,则 ( a ∗ b ) ∣ n (a*b)|n (ab)n

  • 证明

    由性质3可得: a ∣ n → ( a ∗ b ) ∣ ( n ∗ b ) , b ∣ n → ( a ∗ b ) ∣ ( a ∗ n ) a|n\rightarrow (a*b)|(n*b),b|n\rightarrow(a*b)|(a*n) an(ab)(nb)bn(ab)(an)
    由性质2可得: ( a ∗ b ) ∣ ( a ∗ n ∗ x + b ∗ n ∗ y ) (a*b)|(a*n*x+b*n*y) ab)(anx+bny)

    又因为 ( a ∗ n ∗ x + b ∗ n ∗ y ) = n ∗ ( a ∗ x + b ∗ y ) = n (a*n*x+b*n*y)=n*(a*x+b*y)=n (anx+bny)=n(ax+by)=n

    所以 ( a ∗ b ) ∣ n (a*b)|n (ab)n
    证毕

推论 ∀ x , y ∈ Z \forall x,y \in Z x,yZ满足此式 a ∗ x + b ∗ y = m ( m ∈ Z ) a*x+b*y=m(m\in Z) ax+by=m(mZ),易证 ( a ∗ b ) ∣ n ∗ m (a*b)|n*m (ab)nm

5. 若 b = q ∗ d + c b=q*d+c b=qd+c d ∣ b ↔ d ∣ c 即 ( d ∣ b 的 充 分 必 要 条 件 为 d ∣ c ) d|b \leftrightarrow d|c 即(d|b的充分必要条件为d|c) dbdcdbdc

  • 证明(反证法)
    因为 d ∣ b d|b db,所以设 k 1 = b / d k_1=b/d k1=b/d,同理设 k 2 = c / d k_2=c/d k2=c/d

    b = q ∗ d + c → d ∗ k 1 = q ∗ d + d ∗ k 2 b=q*d+c \rightarrow d*k_1=q*d+d*k_2 b=qd+cdk1=qd+dk2 → \rightarrow k 1 = q + k 2 k_1=q+k_2 k1=q+k2

    k 2 k_2 k2为整数时, k 1 k_1 k1为整数;当 k 1 k_1 k1为整数时, k 2 k_2 k2为正整数

    综上,若 b = q ∗ d + c b=q*d+c b=qd+c d ∣ b ↔ d ∣ c d|b \leftrightarrow d|c dbdc
    证毕

5条性质归纳
  1. 如果 a ∣ b a|b ab b ∣ c b|c bc,则 a ∣ c a|c ac

  2. 如果 a ∣ b a|b ab a ∣ c a|c ac,任取 x , y ∈ Z x,y\in Z x,yZ a ∣ ( b ∗ x + c ∗ y ) a|(b*x+c*y) a(bx+cy)

  3. m ≠ 0 m≠0 m=0,则 a ∣ b a|b ab可推出 ( m ∗ a ) ∣ ( m ∗ b ) (m*a) | (m*b) (ma)(mb)

  4. ∀ x , y ∈ Z \forall x,y \in Z x,yZ 满足此式 a ∗ x + b ∗ y = 1 a*x+b*y=1 ax+by=1,又当 a ∣ n a|n an b ∣ n b|n bn,则 ( a ∗ b ) ∣ n (a*b)|n (ab)n
    推论 ∀ x , y ∈ Z \forall x,y \in Z x,yZ满足此式 a ∗ x + b ∗ y = m ( m ∈ Z ) a*x+b*y=m(m\in Z) ax+by=m(mZ),则 ( a ∗ b ) ∣ n ∗ m (a*b)|n*m (ab)nm

  5. b = q ∗ d + c b=q*d+c b=qd+c d ∣ b ↔ d ∣ c 即 ( d ∣ b 的 充 分 必 要 条 件 为 d ∣ c ) d|b \leftrightarrow d|c 即(d|b的充分必要条件为d|c) dbdcdbdc

同余

a , b a,b a,b为两个整数,且 m ∣ ( a − b ) m|(a-b) m(ab),则 a = = b ( m o d    m ) a==b (\mod m) a==b(modm)
k = ( a − b ) / m k=(a-b)/m k=(ab)/m a − b = m ∗ k ( k ∈ Z ) a-b=m*k(k \in Z) ab=mk(kZ)

举例 7 m o d    3 = 1 m o d    3 7 \mod 3= 1 \mod 3 7mod3=1mod3此时 k 为 2 k为2 k2

∀ a , b , c ∈ Z , ∀ m , n ∈ N \forall a,b,c \in Z,\forall m,n \in N a,b,cZm,nN m 为 模 m为模 m

同余性质及证明

  1. 自反性:$ a==a(\mod m) $
    证明略

  2. 对称性:若 a = = b ( m o d    m ) a==b(\mod m) a==b(modm) b = = a ( m o d    m ) b==a(\mod m) b==a(modm)

  3. 传递性:若 a = = b ( m o d    m ) , b = = c ( m o d    m ) a==b(\mod m),b==c(\mod m) a==b(modm)b==c(modm),则 a = = c ( m o d    m ) a==c(\mod m) a==c(modm)

  • 证明
    因为 a = = b ( m o d    m ) , b = = c ( m o d    m ) a==b(\mod m),b==c(\mod m) a==b(modm)b==c(modm)

    所以若 m ∣ ( a − b ) , m ∣ ( c − b ) m|(a-b),m|(c-b) m(ab)m(cb)

    根据整除性质,如果 a ∣ b a|b ab a ∣ c a|c ac,任取 x , y ∈ Z x,y\in Z x,yZ a ∣ ( b ∗ x + c ∗ y ) a|(b*x+c*y) a(bx+cy)

    此时x取-1,y取1, m ∣ ( ( a − b ) ∗ − 1 + ( c − b ) ∗ 1 ) → m ∣ ( c − b ) m|((a-b)*-1+(c-b)*1) \rightarrow m|(c-b) m((ab)1+(cb)1)m(cb) → \rightarrow c = = b ( m o d    m ) c==b(\mod m) c==b(modm)
    证毕

  1. 同加性: 若 a = = b ( m o d    m ) a==b(\mod m) a==b(modm) a + c = = b + c ( m o d    m ) a+c==b+c(\mod m) a+c==b+c(modm)
  • 证明
    a = = b ( m o d    m ) a==b(\mod m) a==b(modm) m ∣ ( a − b ) m|(a-b) m(ab)

    a − b a-b ab加上 0 = c − c 0=c-c 0=cc

    m ∣ ( a − b + c − c ) m|(a-b+c-c) m(ab+cc)整理得 m ∣ ( ( a + c ) − ( b + c ) ) m|((a+c)-(b+c)) m((a+c)(b+c))

    所以 a + c = = b + c ( m o d    m ) a+c==b+c(\mod m) a+c==b+c(modm)
    证毕

  1. 同乘性: 若 a = = b ( m o d    m ) a==b(\mod m) a==b(modm),则 a ∗ c = = b ∗ c ( m o d    m ) a*c==b*c(\mod m) ac==bc(modm);若 a = = b ( m o d    m ) a==b(\mod m) a==b(modm),若 c = = d ( m o d    m ) c==d(\mod m) c==d(modm),则 a ∗ c = = b ∗ d ( m o d    m ) a*c==b*d(\mod m) ac==bd(modm)
  • 证明
    a = = b ( m o d    m ) a==b(\mod m) a==b(modm) m ∣ ( a − b ) m|(a-b) m(ab) k = ( a − b ) / m k=(a-b)/m k=(ab)/m k ∗ m = a − b k*m=a-b km=ab

    等式两边同乘以 c c c,得 c ∗ k ∗ m = ( a − b ) ∗ c c*k*m=(a-b)*c ckm=(ab)c

    因为 m ∣ c ∗ k ∗ m m|c*k*m mckm,所以 m ∣ ( a − b ) ∗ c m|(a-b)*c m(ab)c a ∗ c = = b ∗ c ( m o d    m ) a*c==b*c(\mod m) ac==bc(modm)

    a = = b ( m o d    m ) a==b(\mod m) a==b(modm) m ∣ ( a − b ) m|(a-b) m(ab) k 1 = ( a − b ) / m k_1=(a-b)/m k1=(ab)/m k 1 ∗ m = a − b k_1*m=a-b k1m=ab

    同理令 k 2 = ( c − d ) / m k_2=(c-d)/m k2=(cd)/m k 2 ∗ m = c − d k_2*m=c-d k2m=cd

    a ∗ c − b ∗ d = k 1 ∗ m − k 2 ∗ m = m ∗ ( k 1 − k 2 ) a*c-b*d=k_1*m-k_2*m=m*(k_1-k_2) acbd=k1mk2m=m(k1k2)

    又因为 m ∣ m ( k 1 − k 2 ) m|m(k_1-k_2) mm(k1k2),所以 m ∣ ( a ∗ c − b ∗ d ) m|(a*c-b*d) m(acbd),即 a ∗ c = = b ∗ d ( m o d    m ) a*c==b*d(\mod m) ac==bd(modm)
    证毕

  1. 同幂性:若 a = = b ( m o d    m ) a==b(\mod m) a==b(modm) a n = = b n ( m o d    m ) a^n==b^n(\mod m) an==bn(modm)
    证明就一句话带过,利用同乘性
6条性质归纳
  1. 自反性:$ a==a(\mod m) $

  2. 对称性:若 a = = b ( m o d    m ) a==b(\mod m) a==b(modm) b = = a ( m o d    m ) b==a(\mod m) b==a(modm)

  3. 传递性:若 a = = b ( m o d    m ) , b = = c ( m o d    m ) a==b(\mod m),b==c(\mod m) a==b(modm)b==c(modm),则 a = = c ( m o d    m ) a==c(\mod m) a==c(modm)

  4. 同加性: 若 a = = b ( m o d    m ) a==b(\mod m) a==b(modm) a + c = = b + c ( m o d    m ) a+c==b+c(\mod m) a+c==b+c(modm)

  5. 同乘性: 若 a = = b ( m o d    m ) a==b(\mod m) a==b(modm),则 a ∗ c = = b ∗ c ( m o d    m ) a*c==b*c(\mod m) ac==bc(modm);若 a = = b ( m o d    m ) a==b(\mod m) a==b(modm),若 c = = d ( m o d    m ) c==d(\mod m) c==d(modm),则 a ∗ c = = b ∗ d ( m o d    m ) a*c==b*d(\mod m) ac==bd(modm)

  6. 同幂性:若 a = = b ( m o d    m ) a==b(\mod m) a==b(modm) a n = = b n ( m o d    m ) a^n==b^n(\mod m) an==bn(modm)

###推论

  1. a ∗ b m o d    k = ( a m o d    k ) ∗ ( b   m o d k ) m o d k a*b \mod k=(a \mod k)*(b \ mod k) mod k abmodk=(amodk)(b modk)modk
  • 证明
    因为 a = = ( a m o d    k ) ( m o d    k ) a==(a \mod k)(\mod k) a==(amodk)(modk) b = = ( b m o d    k ) ( m o d    k ) b==(b \mod k)(\mod k) b==(bmodk)(modk)

所以 a ∗ b = = ( a m o d    k ) ∗ ( b m o d    k ) ( m o d    k ) a*b==(a \mod k) * (b \mod k)( \mod k) ab==(amodk)(bmodk)(modk)

证毕
2.若 a m o d    p = x , a m o d    q = x , p , q a \mod p=x,a \mod q=x,p,q amodp=xamodq=xpq互质,则 a m o d    p ∗ q = x a \mod p*q=x amodpq=x

  • 证明
    因为 a m o d    p = x , a m o d    q = x , p , q 互 质 a \mod p=x,a \mod q=x,p,q互质 amodp=xamodq=xpq

所以存在 s , t s,t s,t a = s ∗ p + x , a = t ∗ q + x a=s*p+x,a=t*q+x a=sp+x,a=tq+x

所以 s ∗ q = t ∗ q s*q=t*q sq=tq

则存在整数r,令 s = r ∗ q s=r*q s=rq

所以 a = r ∗ p ∗ q + x a=r*p*q+x a=rpq+x

所以 a m o d    p ∗ q = x a \mod p*q=x amodpq=x
证毕

同余不满足同除性 即不满足 a d i v n = = b d i v n ( m o d    m ) a div n== b div n(\mod m) adivn==bdivn(modm)

概念补充

剩余类

剩余类亦称同余类
定义:对模n同余的所有整数构成的一个集合叫做模n的一个剩余类
根据定义,转化为数学语言
m m m是给定的正整数,以 C r ( r = 0 , 1 , 2 , . . . . , m − 1 ) C_r(r=0,1,2,....,m-1) Cr(r=0,1,2,....,m1)表示所有形如qm+r的整数组成的集合,其中 q = 0 , ± 1 , ± 2 , . . . . . q=0,±1,±2,..... q=0,±1,±2,..... C 0 , C 1 , C 2 , C 3 , . . . . , C m − 1 C_0,C_1,C_2,C_3,....,C_{m-1} C0,C1,C2,C3,....,Cm1称为模 m m m的剩余类。

完全剩余系

定义:在模m的剩余类中各取一个元素,则这m个数就构成了模m的一个完全剩余系
常用完全剩余系,任取m个整数 0 , 1 , 2 , 3 , . . . . . , m − 1 0,1,2,3,.....,m-1 0123.....,m1,则构成一个完全剩余系{ 0 , 1 , 2 , 3 , . . . . . . . . . , m − 1 0,1,2,3,.........,m-1 0123.........,m1}

性质:若 ∀ r ∈ Z + \forall r \in Z^{+} rZ+,{ r 0 , r 1 , r 2 , . . . . . r n r_0,r_1,r_2,.....r_n r0,r1,r2,.....rn}为完全同余系的充要条件为这n个数取模于n的余数互不相等$
(这个稍微理解透定义,就不证自明)

#参考文献

信息学奥赛之数学一本通

在此鸣谢作者

后记

大部分由笔者证明,少部分是原书证明,如有错误证明烦请指出,感激不尽

学好整除同余基本性质,为后期学习奠定基础

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值