构建神经元与神经网络简单介绍

本文介绍了神经元的基本构建,通过一个简单的感知机模型演示如何区分苹果和香蕉。利用权重和传递函数,展示了学习规则如何调整权重以达到预期输出。通过对权重的更新,成功实现了对两种水果的正确辨别。
摘要由CSDN通过智能技术生成

我们首先从一个简单的神经元的构建开始:


P代表输入信号源,W代表权重,这里列出一些常用的传递函数:

阶梯函数(step) 输出0&1
符号函数(sgn) 输出-1&1
线性函数(linear) n本身就是神经元的输出
饱和线性函数(Ramp) 线性斜线n<0,输出0,n在0 1之间,输出n,n>1时输出n
对数S型函数(sigmoid) 有界函数,输出介于0 1 之间
双曲正切S型函数(Tanh) 有界函数,输出介于-1 1之间

这样,我们就构造了一个简单的神经元。

----------------------------------------------------------------------------------------------------------------------------------

感知机:是最简单的神经网络。

举一个简单的例子:分辨苹果和香蕉,假设我们识别他们只需要两个特征,颜色,形状。权重都默认为1,b初

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值