我们首先从一个简单的神经元的构建开始:
P代表输入信号源,W代表权重,这里列出一些常用的传递函数:
阶梯函数(step) | 输出0&1 |
符号函数(sgn) | 输出-1&1 |
线性函数(linear) | n本身就是神经元的输出 |
饱和线性函数(Ramp) | 线性斜线n<0,输出0,n在0 1之间,输出n,n>1时输出n |
对数S型函数(sigmoid) | 有界函数,输出介于0 1 之间 |
双曲正切S型函数(Tanh) | 有界函数,输出介于-1 1之间 |
这样,我们就构造了一个简单的神经元。
----------------------------------------------------------------------------------------------------------------------------------
感知机:是最简单的神经网络。
举一个简单的例子:分辨苹果和香蕉,假设我们识别他们只需要两个特征,颜色,形状。权重都默认为1,b初