[BZOJ] 1089 [SCOI2003]严格n元树

35 篇文章 0 订阅
6 篇文章 0 订阅
Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 2123  Solved: 1065
[Submit][Status][Discuss]
Description
  如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树。如果该树中最底层的节点深度为d
(根的深度为0),那么我们称它为一棵深度为d的严格n元树。例如,深度为2的严格2元树有三个,如下图:



  给出n, d,编程数出深度为d的n元树数目。

Input
  仅包含两个整数n, d( 0   <   n   <   =   32,   0  < =   d  < = 16)

Output
  仅包含一个数,即深度为dn元树的数目。

Sample Input
【样例输入12 2



【样例输入22 3



【样例输入33 5
Sample Output
【样例输出13



【样例输出221



【样例输出258871587162270592645034001
HINT
Source

考虑f[i]表示深度不超过i的严格n元树的个数。
这样考虑的好处是,如果定义为恰好深度i的个数,那么很难转移,因为它不满,可能有一棵子树使其达到i层,其他不满,就很难受。
但是定义成这种前缀和形式,就可以转移了,把这种情况全考虑进去,最后差分即可。
巧妙,叹为观止。

转移时考虑加一个根,由于是n元树,根下需要n个子树
f[i]=(f[i-1]^n)+1

需要高精度(并不能默写。。)
以及当d=0时,特判答案1。

#include <iostream>
#include <string>
#include <cstring>
#include <cstdio>
using namespace std;

const int maxn = 10000;

struct bign{
    int d[maxn], len;

    void clean() { while(len > 1 && !d[len-1]) len--; }

    bign()          { memset(d, 0, sizeof(d)); len = 1; }
    bign(int num)   { *this = num; } 
    bign(char* num) { *this = num; }
    bign operator = (const char* num){
        memset(d, 0, sizeof(d)); len = strlen(num);
        for(int i = 0; i < len; i++) d[i] = num[len-1-i] - '0';
        clean();
        return *this;
    }
    bign operator = (int num){
        char s[2000]; sprintf(s, "%d", num);
        *this = s;
        return *this;
    }

    bign operator + (const bign& b){
        bign c = *this; int i;
        for (i = 0; i < b.len; i++){
            c.d[i] += b.d[i];
            if (c.d[i] > 9) c.d[i]%=10, c.d[i+1]++;
        }
        while (c.d[i] > 9) c.d[i++]%=10, c.d[i]++;
        c.len = max(len, b.len);
        if (c.d[i] && c.len <= i) c.len = i+1;
        return c;
    }
    bign operator - (const bign& b){
        bign c = *this; int i;
        for (i = 0; i < b.len; i++){
            c.d[i] -= b.d[i];
            if (c.d[i] < 0) c.d[i]+=10, c.d[i+1]--;
        }
        while (c.d[i] < 0) c.d[i++]+=10, c.d[i]--;
        c.clean();
        return c;
    }
    bign operator * (const bign& b)const{
        int i, j; bign c; c.len = len + b.len; 
        for(j = 0; j < b.len; j++) for(i = 0; i < len; i++) 
            c.d[i+j] += d[i] * b.d[j];
        for(i = 0; i < c.len-1; i++)
            c.d[i+1] += c.d[i]/10, c.d[i] %= 10;
        c.clean();
        return c;
    }
    bign operator / (const bign& b){
        int i, j;
        bign c = *this, a = 0;
        for (i = len - 1; i >= 0; i--)
        {
            a = a*10 + d[i];
            for (j = 0; j < 10; j++) if (a < b*(j+1)) break;
            c.d[i] = j;
            a = a - b*j;
        }
        c.clean();
        return c;
    }
    bign operator % (const bign& b){
        int i, j;
        bign a = 0;
        for (i = len - 1; i >= 0; i--)
        {
            a = a*10 + d[i];
            for (j = 0; j < 10; j++) if (a < b*(j+1)) break;
            a = a - b*j;
        }
        return a;
    }
    bign operator += (const bign& b){
        *this = *this + b;
        return *this;
    }

    bool operator <(const bign& b) const{
        if(len != b.len) return len < b.len;
        for(int i = len-1; i >= 0; i--)
            if(d[i] != b.d[i]) return d[i] < b.d[i];
        return false;
    }
    bool operator >(const bign& b) const{return b < *this;}
    bool operator<=(const bign& b) const{return !(b < *this);}
    bool operator>=(const bign& b) const{return !(*this < b);}
    bool operator!=(const bign& b) const{return b < *this || *this < b;}
    bool operator==(const bign& b) const{return !(b < *this) && !(b > *this);}

    string str() const{
        char s[maxn]={};
        for(int i = 0; i < len; i++) s[len-1-i] = d[i]+'0';
        return s;
    }
};

istream& operator >> (istream& in, bign& x)
{
    string s;
    in >> s;
    x = s.c_str();
    return in;
}

ostream& operator << (ostream& out, const bign& x)
{
    out << x.str();
    return out;
}


bign f[35];
int n;
int d;

int main(){
    cin>>n>>d;
    if(n==1&&d==1) return cout<<0,0;
    if(d==0) return cout<<1,0;
    f[1]=1;
    for(int i=1;i<=d;i++) {
        bign tmp=1;
        for(int j=1;j<=n;j++) tmp=tmp*f[i-1];
        f[i]=f[i]+tmp+1;
    }
    bign ans=f[d]-f[d-1];
    cout<<ans;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值