kernel size 1*1 的卷积,有什么用处?

本文探讨了1x1卷积核在深度学习中的应用,重点介绍了它在降维和引入非线性方面的功能。1x1卷积核可以在不损失空间分辨率的情况下减少输入特征图的数量,从而加快计算速度并减少参数数量。此外,通过添加非线性激活函数,进一步增强了网络的表达能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

11卷积过滤器 和正常的过滤器一样,唯一不同的是它的大小是11,没有考虑在前一层局部信息之间的关系。最早出现在 Network In Network的论文中 ,使用11卷积是想加深加宽网络结构 ,在Inception网络( Going Deeper with Convolutions )中用来降维.


由于3
3卷积或者55卷积在几百个filter的卷积层上做卷积操作时相当耗时,所以11卷积在33卷积或者55卷积计算之前先降低维度。
那么,11卷积的主要作用有以下几点:1、降维( dimension reductionality )。比如,一张500 * 500且厚度depth为100 的图片在20个filter上做11的卷积,那么结果的大小为50050020。
2、加入非线性。卷积层之后经过激励层,1*1的卷积在前一层的学习表示上添加了非线性激励( non-linear activation ),提升网络的表达能力;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值