CAS(ME)² 数据 下载方式

CAS(ME)²: A Database for Spontaneous Macro-Expression and Micro-Expression Spotting and Recognition
论文下载链接:https://pan.baidu.com/s/1nBoNxh3-Y_GlG93X6o-m3A 提取码:3qob

数据下载链接:https://github.com/CodeStoreHub/EEG-datasets

作者

Fangbing Qu, Su-Jing Wang, Wen-Jing Yan, He Li, Shuhang Wu, Xiaolan Fu

摘要

论文指出欺骗行为在我们的日常生活中非常普遍,检测欺骗行为对于执法官员和研究人员都有益。微表情作为一种潜在的欺骗线索,具有很大的研究价值。然而,目前还没有公开的数据库同时包含长视频中的宏观表情和微表情。为了促进这一领域的发展,作者们介绍了中国科学院宏观表情和微表情数据库(CAS(ME)2),它包含两部分:A部分和B部分。A部分包含87个长视频,包含自发的宏观表情和微表情。B部分包括300个裁剪的宏观表情样本和57个微表情样本。论文还介绍了基于局部二值模式(Local Binary Pattern, LBP)的宏观表情和微表情的检测与识别方法,并报告了基线评估结果。

1. 引言

介绍了人际欺骗的普遍性以及检测欺骗的困难性。微表情作为一种快速且短暂的面部表情,通常在个体试图隐藏真实情感时出现,尤其是在高风险情境下。论文强调了自动检测视频中的微表情对于执法官员在审讯中识别嫌疑人的异常或欺骗线索可能具有重要意义。

2. 相关工作

  • 2.1 前人面部表情数据库分析:介绍了现有的宏观表情数据库和动态信息的重要性。
  • 2.2 微表情数据库分析:指出了现有微表情数据库的局限性,如样本数量有限,以及它们在自动微表情检测中的应用。
  • 2.3 情绪诱导方法分析:讨论了不同情绪诱导方法的优缺点,如情感表演、操纵方法和观看影片。
  • 2.4 CAS(ME)2数据库特点:介绍了CAS(ME)2数据库的主要贡献,包括它是第一个公开的包含长视频中宏观和微表情的数据库。

3. CAS(ME)2数据库概况

  • 3.1 参与者和诱导材料:招募了22名参与者,并选择了能够诱发特定情绪的视频材料。
  • 3.2 诱导过程:描述了实验设置和参与者在观看情绪诱发视频时的指导语。
  • 3.3 编码过程:详细说明了如何使用面部动作编码系统(FACS)对表情进行编码和标记。
  • 3.4 情绪标记:介绍了如何结合FACS、情绪诱发视频的类型和参与者的自我报告来标记表情样本的情绪。
  • 3.5 CAS(ME)2用户指南:提供了数据库的下载和使用指南。

4. 数据库基线评估

  • 4.1 LBP和LBP-TOP:介绍了局部二值模式(LBP)和局部二值模式在三个正交平面(LBP-TOP)上的应用。
  • 4.2 表情检测评估:使用LBP方法对视频中的表情进行自动检测,并报告了检测结果。
  • 4.3 表情识别评估:使用LBP-TOP直方图和支持向量机(SVM)对表情进行识别,并报告了识别结果。

5. 总结

论文的重点在于介绍一个新的数据库,该数据库旨在促进宏观表情和微表情的自动检测和识别算法的发展。通过提供详细的数据库描述、基线评估方法和结果,作者们为后续研究提供了一个有价值的资源。

数据预览:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值