特征解释
battery_power:电池一次可储存的总能量,单位为毫安时
blue :是否有蓝牙
clock_speed:微处理器执行指令的速度
dual_sim:是否支持双卡
fc:前置摄像头百万像素
four_g:是否有4G
int_memory:内存(GB)
m_dep:移动深度(cm)
mobile_wt:手机重量
n_cores:处理器内核数
pc:主摄像头百万像素
px_height:像素分辨率高度
px_width:像素分辨率宽度
ram:随机存取存储器(兆字节)
sc_h:手机屏幕高度(cm)
sc_w:手机屏幕宽度(cm)
talk_time:一次电池充电持续时间最长的时间
three_g:是否有3G
touch_screen:是否有触控屏
wifi:是否能连wifi
price_range:价格区间(0,1,2,3)
需要注意的是: 在这个问题中,我们不需要预测实际价格,而是一个价格范围,它的范围使用 0、1、2、3 来表示,所以该问题也是一个分类问题。
代碼分布解析
导包
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import time
构建数据集
# 构建数据集
def create_dataset(load_str = '../data/手机价格预测.csv'):
# 使用pandas读取数据
data = pd.read_csv(load_str)
# 特征值和目标值
x, y = data.iloc[:, :-1], data.iloc[:, -1]
# 类型转换:特征值,目标值
x = x.astype(np.float32)
y = y.astype(np.int64)
# 数据集划分
x_train, x_valid, y_train, y_valid = train_test_split(x, y, train_size=0.8, random_state=88)
# 构建数据集,转换为pytorch的形式
train_dataset = TensorDataset(torch.from_numpy(x_train.values), torch.tensor(y_train.values))
valid_dataset = TensorDataset(torch.from_numpy(x_valid.values), torch.tensor(y_valid.values))
# 返回结果:训练集数据,验证集数据,样本特征维度和目标分类个数
return train_dataset, valid_dataset, x_train.shape[1], len(np.unique(y))
# 查看数据是否读取正确
train_dataset, valid_dataset, input_dim, class_num = create_dataset()
print("输入特征数:",input_dim)
print("分类个数:",class_num)
创建模型
# 构建网络模型
class PhonePriceModel(nn.Module):
def __init__(self, input_dim, output_dim):
super(PhonePriceModel, self).__init__()
# 1. 第一层: 输入为维度为 20, 输出维度为: 128
self.linear1 = nn.Linear(input_dim, 128)
# 2. 第二层: 输入为维度为 128, 输出维度为: 256
self.linear2 = nn.Linear(128, 256)
# 3. 第三层: 输入为维度为 256, 输出维度为: 4
self.out = nn.Linear(256, output_dim)
def forward(self, x):
# 前向传播过程
x = torch.relu(self.linear1(x))
x = torch.relu(self.linear2(x))
output = self.out(x)
# 获取数据结果
return output
模型训练
# 模型训练过程
def train(train_dataset,input_dim,class_num,):
# 固定随机数种子
torch.manual_seed(0)
# 初始化模型
model = PhonePriceModel(input_dim, class_num)
# 损失函数
criterion = nn.CrossEntropyLoss()
# 优化方法
optimizer = optim.SGD(model.parameters(), lr=1e-3)
# 训练轮数
num_epoch = 50
# 遍历每个轮次的数据
for epoch_idx in range(num_epoch):
# 初始化数据加载器
dataloader = DataLoader(train_dataset, shuffle=True, batch_size=8)
# 训练时间
start = time.time()
# 计算损失
total_loss = 0.0
total_num = 1
# 遍历每个batch数据进行处理
for x, y in dataloader:
# 将数据送入网络中进行预测
output = model(x)
# 计算损失
loss = criterion(output, y)
# 梯度清零
optimizer.zero_grad()
# 反向传播
loss.backward()
# 参数更新
optimizer.step()
# 损失计算
total_num += 1
total_loss += loss.item()
# 打印损失变换结果
print('epoch: %4s loss: %.2f, time: %.2fs' %
(epoch_idx + 1, total_loss / total_num, time.time() - start))
# 模型保存
torch.save(model.state_dict(), 'model/phone.pth')
模型预测效果
# 模型预测结果评估
def test(valid_dataset,input_dim,class_num):
# 加载模型和训练好的网络参数
model = PhonePriceModel(input_dim, class_num)
model.load_state_dict(torch.load('data/phone.pth'))
# 构建加载器
dataloader = DataLoader(valid_dataset, batch_size=8, shuffle=False)
# 评估测试集
correct = 0
# 遍历测试集中的数据
for x, y in dataloader:
# 将其送入网络中
output = model(x)
# 获取类别结果
y_pred = torch.argmax(output, dim=1)
# 获取预测正确的个数
correct += (y_pred == y).sum()
# 求预测精度
print('Acc: %.5f' % (correct.item() / len(valid_dataset)))
运行结果: