题目描述
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。例如,数组 [3,4,5,1,2]
为 [1,2,3,4,5]
的一个旋转,该数组的最小值为1
。
示例 1:
输入:[3,4,5,1,2]
输出:1
示例 2:
输入:[1,1,1,0,1]
输出:0
示例3:
输入:[1,0,1,1,1]
输出:0
示例4:
输入:[1,2,3,4,5]
输出:1
题解
根据题目描述得出:给定数组由两个排好序的数组组成,而且满足左数组所有元素大于等于右数组所有元素。
题目要求的数组中最小元素,也就是右排序数组中的第一个元素。
所以可以采用二分法的思路来做,初始化 l e f t = 0 left = 0 left=0, r i g h t = n u m b e r s . l e n g t h − 1 right = numbers.length - 1 right=numbers.length−1 。计算中点的下标 m e d i u m = ( l e f t + r i g h t ) / 2 medium = (left + right) / 2 medium=(left+right)/2 ,并判断中点的值和右边值的关系:
- 如果numbers[medium] > numbers[right],说明medium正处于左数组,将left设为medium + 1。
- 如果numbers[medium] < numbers[right],说明medium正处于右数组,将right设为medium(这时不能设置为medium - 1,因为目标是求右数组的第一个元素,medium已经在右数组里了,如果将medium - 1就可能出界到左数组中)
- 如果numbers[medium] == numbers[right],比如
[1,0,1,1,1]
或[1,1,1,0,1]
。这时最小元素可能在左边,也可能在右边,所以直接顺序遍历left到right中的所有元素即可。
class Solution {
public int minArray(int[] numbers) {
int left = 0, right = numbers.length - 1;
while (left < right)
{
int medium = (left + right ) / 2;
if (numbers[medium] > numbers[right]) {
left = medium + 1;
} else if (numbers[medium] < numbers[right]) {
right = medium;
} else {
return findMin(numbers, left, right);
}
}
return numbers[left];
}
private static int findMin(int [] numbers, int left, int right) {
int min = 0x3f3f3f3f;
for (int i = left ; i <= right ; i++) {
if (min > numbers[i]) {
min = numbers[i];
}
}
return min;
}
}
时间复杂度: O ( l o g ( n ) ) O(log(n)) O(log(n))。
空间复杂度: O ( 1 ) O(1) O(1)。