估计——最小方差无偏估计

- 确定好的估计量

- 建立数据的数学模型:一般由于数据固有的随机性,则选择它们的PDF来描述它,即 p(x_{1},x_{2},...,x_{N-1};\theta )

- 运用PDF和相关约束条件来获取估计量:估计对象是一个确定性的参数,只是具体值未知。如果估计对象是一个随机变量,则需要引入估计对象的先验分布,利用贝叶斯方法进行估计。

- 最佳估计量的选择:估计量性能的评估(无偏性、有效性以及一致性)。常用的方法:期望验证无偏;CRLB(Cramer-Rao Lower Bound)和方差验证有效;一致性利用依概率收敛验证。

 

- 估计方法一——最小方差无偏估计(MVU)

- 无偏估计量:估计量的均值为未知参数的真值  即 E( \hat{\theta }) =\theta。(注意:无偏估计量并不意味着它就是好的/最佳的估计量)

- 无偏性的另一个重要含义:当同一参数有多个估计量可用的请况 [\hat{\theta _{1}},\hat{\theta _{2}},...,\hat{\theta _{n}}] 。 一个合理的解决方法,对这些估计组合求平均,从而获取更好的估计,即是\hat{\theta }=\frac{1}{n}\sum_{i=1}^{n}\hat{\theta _{i}}。若干每个估计量是无偏,方差相同且互不相关,则有

                                                                            E( \hat{\theta }) =\theta

                                                   var(\hat{\theta })=\frac{1}{n^{2}}\sum_{i=1}^{n}var(\hat{\theta _{i}})=var(\hat{\theta _{1}})/n

- 有偏估计量:一般请况定义估计量的偏差为

                                                                    e(\theta )=E(\hat{\theta })-\theta

- 最小方差准则:一个自然的准则是均方误差(MSE)

定义为

                                                            mse(\hat{\theta }))=E[(\hat{\theta }-\theta )^{2}]

           mse(\hat{\theta }))=E\left \{ [(\hat{\theta}-E(\hat{\theta})) + (E(\hat{\theta})-\theta )]^{2}\right \}{=var(\hat{\theta }) + [E(\hat{\theta })-\theta ]^{2}=var(\hat{\theta }) + b^{2}(\theta )

- MVUE是否存在:对所有的\theta具有最小方差的无偏估计   例如下图(图片来源:Steven M. Kay《Fundamental of statistical signal processing estimation theory》)

                       

- 求MVUE:MVUE即使存在,可能也无法求取请况。有几种常用方法:1)利用CRLB,检查是否有某些参数估计量满足MVUE;2)应用RBLS(Rao-Blackwell-Lehman-Scheffe)定理;3)进一步限制估计量是无偏的,且还是线性的,然后在这些限制中找到MVU。这三个方法后面会逐一说明。

  • 3
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
块匹配算法(Block Matching Algorithm,BMA)是一种常用的运动估计算法,其核心思想是将当前帧图像中的一块区域与参考帧图像中的相应区域进行匹配,从而得到两帧图像之间的运动向量。以下是一个基于块匹配算法的运动估计的示例代码: ```python import cv2 # 读取两帧图像 prev_frame = cv2.imread('prev_frame.png', cv2.IMREAD_GRAYSCALE) curr_frame = cv2.imread('curr_frame.png', cv2.IMREAD_GRAYSCALE) # 设置块大小和搜索范围 block_size = 16 search_range = 16 # 初始化运动向量矩阵 motion_vectors = [] # 遍历当前帧图像的每个块 for i in range(0, curr_frame.shape[0], block_size): for j in range(0, curr_frame.shape[1], block_size): # 计算当前块的坐标 x = i y = j # 限制搜索范围 min_x = max(0, x - search_range) max_x = min(curr_frame.shape[0] - block_size, x + search_range) min_y = max(0, y - search_range) max_y = min(curr_frame.shape[1] - block_size, y + search_range) # 初始化最小方差和对应的运动向量 min_mse = float('inf') mv = (0, 0) # 遍历参考帧图像中的每个块 for m in range(min_x, max_x, block_size): for n in range(min_y, max_y, block_size): # 计算参考块的坐标 ref_x = m ref_y = n # 计算当前块和参考块之间的均方差 mse = ((curr_frame[x:x+block_size, y:y+block_size] - prev_frame[ref_x:ref_x+block_size, ref_y:ref_y+block_size]) ** 2).mean() # 如果均方差更小,则更新最小方差和对应的运动向量 if mse < min_mse: min_mse = mse mv = (m - x, n - y) # 将当前块的运动向量添加到运动向量矩阵中 motion_vectors.append(mv) # 将运动向量矩阵转换为灰度图像 motion_vectors = cv2.merge([cv2.cvtColor(np.array(motion_vectors, dtype=np.float32), cv2.COLOR_RGB2GRAY)]) # 显示运动向量图像 cv2.imshow('Motion Vectors', motion_vectors) cv2.waitKey(0) cv2.destroyAllWindows() ``` 注意,在实际应用中,为了提高运动估计的精度和效率,通常还会采用一些优化策略,比如多级块匹配和亚像素插值等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值