统计信号处理:(估计二) 最小方差无偏估计

最小方差无偏估计

2.1 无偏估计量

​ 无偏估计意味着估计量的平均值为未知参数的真值。如果
E [ θ ^ ] = θ , a < θ < b E[\hat{\theta}]=\theta, a<\theta<b E[θ^]=θ,a<θ<b
说明估计量 θ ^ \hat{\theta} θ^​是无偏估计量。


​ 例:白色高斯噪声中DC电平的无偏估计量

观测值 x [ n ] = A + w [ n ]   n = 0 , 1 , . . . , N − 1 x[n]=A+w[n]\ n=0,1,...,N-1 x[n]=A+w[n] n=0,1,...,N1

观测值中的参数A即所需估计的DC电平。取合理的估计量为:
A ^ = 1 N ∑ n = 0 N − 1 x [ n ] \hat{A}=\frac{1}{N}\sum_{n=0}^{N-1}x[n] A^=N1n=0N1x[n]

估计量的期望为:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ E(\hat{A})&=E[…


​ 无偏估计量只是保证估计量的平均值为真值,相比于有偏估计量不存在系统误差。但是在多个无偏估计量的情况下,可以用多个估计量的平均获得更好的估计。
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \hat{\theta}&=…
​ 所以求平均的估计越多,其均值会收敛到真值,且估计量的方差越小。

​ 但是如果估计量为有偏估计 E ( θ ^ ) = θ + b ( θ ) E(\hat{\theta})=\theta+b(\theta) E(θ^)=θ+b(θ),那么无论对多少估计量求平均,都不会收敛到真值。

估计量的偏差: b ( θ ) = E ( θ ^ ) − θ b(\theta)=E(\hat{\theta})-\theta b(θ)=E(θ^)θ

在这里插入图片描述

​ 为了从多个无偏估计量中选择出最佳估计量,可以采用一些最佳准则。

均方误差(mean square error,MSE)表示的是估计量偏离真值的平方偏差的统计平均值,由估计量的方差和偏差导致的误差组成。
m s e ( θ ^ ) = E [ ( θ ^ − θ ) 2 ] = v a r ( θ ^ ) + [ E ( θ ^ ) − θ ] 2 = v a r ( θ ^ ) + b 2 ( θ ) mse(\hat{\theta}) =E[(\hat{\theta}-\theta)^2] \\ =var(\hat{\theta})+[E(\hat{\theta})-\theta]^2\\=var(\hat{\theta})+b^2(\theta) mse(θ^)=E[(θ^θ)2]=var(θ^)+[E(θ^)θ]2=var(θ^)+b2(θ)
​ 但是如果让均方误差对修正常数求导,寻找出最小均方误差时可以发现估计量修正常数与真值有关,说明估计量是不可实现的。因此
在实际运用中,需要放弃最小MSE估计。选择另外一种方法使得约束偏差为零,从而求出使得方差最小的估计量
,这样得到的估计量称为最小方差无偏估计(minimum variance unbiased,MVU)

​ MVU的存在性:MVU表明它的方差相对其它所有估计量的方差是最小的,如果存在一个估计量的方差小于MVU的,说明MVU不存在。针对下图,可以说a图存在MVU,而b图不存在MVU。

在这里插入图片描述

求最小方差无偏估计量MVU

​ 即使MVU存在,一般也很难求出。下面给出了一些可能求出的方法:

  1. 确定Cramer-Rao下限(CRLB),然后检查估计量是否满足CRLB;
  2. 应用Rao-Blackwell-lehmann-Scheffe(RBLS)定理;
  3. 进一步限制估计不仅是无偏,而且还是线性的,在这些限制中找出MVU。

扩展到适量参数

​ 如果 θ = [ θ 1 , θ 2 , . . . , θ p ] \pmb\theta=[\theta_1,\theta_2,...,\theta_p] θθθ=[θ1,θ2,...,θp]是未知参数矢量,那么估计量 θ ^ = [ θ ^ 1 , θ ^ 2 , . . . , θ ^ p ] \hat{\pmb\theta}=[\hat\theta_1,\hat\theta_2,...,\hat\theta_p] θθθ^=[θ^1,θ^2,...,θ^p]​如果满足
E ( θ ^ i ) = θ i E(\hat\theta_i)=\theta_i E(θ^i)=θi
则说明估计量为无偏估计,那么该估计量具有 E ( θ ^ ) = θ E(\hat{\pmb\theta})=\pmb\theta E(θθθ^)=θθθ。同样对于MVU,对该参数矢量中任意一个参数都有 v a r ( θ ^ i ) var(\hat\theta_i) var(θ^i)都是最小的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值