最小方差无偏估计
2.1 无偏估计量
无偏估计意味着估计量的平均值为未知参数的真值。如果
E
[
θ
^
]
=
θ
,
a
<
θ
<
b
E[\hat{\theta}]=\theta, a<\theta<b
E[θ^]=θ,a<θ<b
说明估计量
θ
^
\hat{\theta}
θ^是无偏估计量。
例:白色高斯噪声中DC电平的无偏估计量
观测值 x [ n ] = A + w [ n ] n = 0 , 1 , . . . , N − 1 x[n]=A+w[n]\ n=0,1,...,N-1 x[n]=A+w[n] n=0,1,...,N−1
观测值中的参数A即所需估计的DC电平。取合理的估计量为:
A
^
=
1
N
∑
n
=
0
N
−
1
x
[
n
]
\hat{A}=\frac{1}{N}\sum_{n=0}^{N-1}x[n]
A^=N1n=0∑N−1x[n]
估计量的期望为:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ E(\hat{A})&=E[…
无偏估计量只是保证估计量的平均值为真值,相比于有偏估计量不存在系统误差。但是在多个无偏估计量的情况下,可以用多个估计量的平均获得更好的估计。
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \hat{\theta}&=…
所以求平均的估计越多,其均值会收敛到真值,且估计量的方差越小。
但是如果估计量为有偏估计 E ( θ ^ ) = θ + b ( θ ) E(\hat{\theta})=\theta+b(\theta) E(θ^)=θ+b(θ),那么无论对多少估计量求平均,都不会收敛到真值。
估计量的偏差: b ( θ ) = E ( θ ^ ) − θ b(\theta)=E(\hat{\theta})-\theta b(θ)=E(θ^)−θ
为了从多个无偏估计量中选择出最佳估计量,可以采用一些最佳准则。
均方误差(mean square error,MSE)表示的是估计量偏离真值的平方偏差的统计平均值,由估计量的方差和偏差导致的误差组成。
m
s
e
(
θ
^
)
=
E
[
(
θ
^
−
θ
)
2
]
=
v
a
r
(
θ
^
)
+
[
E
(
θ
^
)
−
θ
]
2
=
v
a
r
(
θ
^
)
+
b
2
(
θ
)
mse(\hat{\theta}) =E[(\hat{\theta}-\theta)^2] \\ =var(\hat{\theta})+[E(\hat{\theta})-\theta]^2\\=var(\hat{\theta})+b^2(\theta)
mse(θ^)=E[(θ^−θ)2]=var(θ^)+[E(θ^)−θ]2=var(θ^)+b2(θ)
但是如果让均方误差对修正常数求导,寻找出最小均方误差时可以发现估计量修正常数与真值有关,说明估计量是不可实现的。因此在实际运用中,需要放弃最小MSE估计。选择另外一种方法使得约束偏差为零,从而求出使得方差最小的估计量,这样得到的估计量称为最小方差无偏估计(minimum variance unbiased,MVU)
MVU的存在性:MVU表明它的方差相对其它所有估计量的方差是最小的,如果存在一个估计量的方差小于MVU的,说明MVU不存在。针对下图,可以说a图存在MVU,而b图不存在MVU。
求最小方差无偏估计量MVU
即使MVU存在,一般也很难求出。下面给出了一些可能求出的方法:
- 确定Cramer-Rao下限(CRLB),然后检查估计量是否满足CRLB;
- 应用Rao-Blackwell-lehmann-Scheffe(RBLS)定理;
- 进一步限制估计不仅是无偏,而且还是线性的,在这些限制中找出MVU。
扩展到适量参数
如果
θ
=
[
θ
1
,
θ
2
,
.
.
.
,
θ
p
]
\pmb\theta=[\theta_1,\theta_2,...,\theta_p]
θθθ=[θ1,θ2,...,θp]是未知参数矢量,那么估计量
θ
^
=
[
θ
^
1
,
θ
^
2
,
.
.
.
,
θ
^
p
]
\hat{\pmb\theta}=[\hat\theta_1,\hat\theta_2,...,\hat\theta_p]
θθθ^=[θ^1,θ^2,...,θ^p]如果满足
E
(
θ
^
i
)
=
θ
i
E(\hat\theta_i)=\theta_i
E(θ^i)=θi
则说明估计量为无偏估计,那么该估计量具有
E
(
θ
^
)
=
θ
E(\hat{\pmb\theta})=\pmb\theta
E(θθθ^)=θθθ。同样对于MVU,对该参数矢量中任意一个参数都有
v
a
r
(
θ
^
i
)
var(\hat\theta_i)
var(θ^i)都是最小的。