Fault Description Based Attribute Transfer for Zero-Sample Industrial Fault Diagnosis

Preface

本文采用基于故障描述的属性迁移方法,研究了无训练样本的目标故障类别的故障诊断场景。与传统的诊断范式不同,每个故障提供了包含任意属性的故障描述作为辅助信息。故障描述层嵌入在故障样本层和故障类别层之间。基于故障描述层中的细粒度和类共享属性,可以构建级联诊断系统,将训练故障的属性知识转移到目标故障,进行零样本故障诊断。在基于故障描述的方法中,我们还采用了有监督的主成分分析作为特征提取器,为更有效的学习过程提供了与属性相关的特征。

主要贡献:

  • 首次完成并解决了零样本故障诊断任务,即尝试在不需要其样本的情况下诊断目标故障。
  • 提出了一种基于故障描述的方法,以故障描述为辅助知识源,实现了训练故障向目标故障的属性迁移,从而进行了零样本诊断。

Problem Formulation

向量空间中的表述

对每种故障进行故障描述,以提供细粒度的类级信息。该描述由任意的属性组成,包括故障的影响、具体的故障位置、故障的原因等。
每个属性在向量空间中都是一个维度,对故障的描述表示为 a ′ ∈ R C ′ a'\in \mathbb{R}^{C'} aRC,其中 C ′ C' C是属性的数量。
对于 L L L类故障,描述矩阵可以记为 A ′ ∈ R L × C ′ A'\in \mathbb{R}^{L\times C'} ARL×C
本文采用独热编码技术制作稀疏矩阵 A ∈ R L × C = o n e − h o t ( A ′ ) A\in \mathbb{R}^{L\times C}=one-hot(A') ARL×C=onehot(A),其中 C C C为独热编码的维数。
A A A中的所有元素都是1或0,这表示该属性在某个故障类别的描述中存在或不存在。

零样本故障诊断的公式编制

与迁移学习类似,源域: S = { s 1 , . . . , s q } S=\{s_1,...,s_q\} S={s1,...,sq},其中 q q q为已知类别数,目标域: T = { t 1 , . . . t p } T=\{t_1,...t_p\} T={t1,...tp},其中 p p p为未知类别数。目标域没有训练数据,并且 T ∩ S = ∅ T\cap S=\varnothing TS= S S S中的样本记为: S = { X S ∈ R N S × D , Y ∈ R N S } \mathscr{S}=\{X_S\in \mathbb{R}^{N_S\times D},Y\in \mathbb{R}^{N_S}\} S={XSRNS×D,YRNS} N S , D N_S,D NS,D分别是样本数和特征维度。零样本故障诊断学习了从 S S S T T T f f f映射:
在这里插入图片描述

  • 这里的 C L o s s CLoss CLoss表示任意的损失函数
    进一步的:
    在这里插入图片描述
  • 其中属性描述矩阵 A = [ A S , A T ] ∈ R L × C , L = p + q A=[A_S,A_T]\in \mathbb{R}^{L\times C},L=p+q A=[AS,AT]RL×C,L=p+q
    PS: S S S的属性描述矩阵 A S A_S AS和T的 A T A_T AT都可用于模型训练,因为属性描述是类级的,而不是样本级的;是常识,而不是专业的专家知识。

Method

基于故障描述的属性迁移学习

困局:在训练阶段无法获得目标故障的参数向量 α α α
在这里插入图片描述
基于故障描述的零样本故障诊断任务方法的基本思想如图所示:
在这里插入图片描述

  • Step 1:特征提取,训练标签 Y S Y_S YS和训练故障描述 A S A_S AS合并成训练属性标签 Z S = [ z 1 S , . . . , z C S ] Z_S=[z_1^S,...,z_C^S] ZS=[z1S,...,zCS],即每个故障样本由 C C C维属性向量描述。对 { X , z i S } ( i = 1 , . . . , C ) \{X,z_i^S\}(i=1,...,C) {X,ziS}(i=1,...,C)进行PCA,提取属性相关特征。训练样本 x x x的特征记为 b b b,变换记为 φ \varphi φ
  • Step 2:映射,不是直接学习特征和标签之间的映射,而是在训练阶段的监督方式下为每种属性 a i a_i ai训练一个属性学习器 α i ( i = 1 , . . . , C ) α_i(i = 1,...,C) αii=1...C。在测试时,这些属性学习器允许对目标故障的每个测试样本进行预测属性值(1或0)。请注意,只要训练和目标故障的属性在相同的维度中描述,对于更多的属性学习器就不需要额外的训练。
  • Step 3:分类,由于目标故障的故障描述已知: A T ∈ R p × C A_T\in \mathbb{R}^{p\times C} ATRp×C,从故障描述到故障类别的推理规则 β β β可以获得并用于测试样本,如最近邻搜索等

从概率论的角度精确描述为:

  • Step 1: b = φ ( x ) b=\varphi(x) b=φ(x)
  • Step 2: p ( a ∣ b ) = Π i = 1 C p ( a i ∣ b ) , a ∈ R C p(a|b)=\Pi_{i=1}^Cp(a_i|b),a\in \mathbb{R}^C p(ab)=Πi=1Cp(aib)aRC
  • Step 3: a → t a\rightarrow t at,第 t t t个类的属性向量 a a a表示为 a t = [ a 1 t , . . . , a C t ] a^t=[a_1^t,...,a_C^t] at=[a1t,...,aCt]

基于贝叶斯规则,该推理表述为:
在这里插入图片描述

  • [ a = a t ] = 0 ∣ 1 [a=a^t]=0|1 [a=at]=0∣1,由于 A T A_T AT已知,得: p ( a t ∣ t ) = 1 p(a^t|t)=1 p(att)=1
  • p ( a t ) = Π i = 1 C p ( a i t ) p(a^t)=\Pi_{i=1}^Cp(a_i^t) p(at)=Πi=1Cp(ait),其中 p ( a i t ) = 1 q Σ j = 1 q a i s j p(a_i^t)=\frac{1}{q}\Sigma_{j=1}^qa_i^{s_j} p(ait)=q1Σj=1qaisj为先验属性知识

测试样本中得到测试故障类别的后验为:
在这里插入图片描述
b = φ ( x ) b=\varphi(x) b=φ(x),只用最大后验估计得到最佳输出:
在这里插入图片描述

  • a t j a^{t_j} atj为第 j j j个目标故障类别的故障描述向量, a i t j a_i^{t_j} aitj表示 a t j a^{t_j} atj的第 i i i个元素。

可行性分析

Experiment

提供两个Case,Tennessee–Eastman 过程和真实火电厂过程

Tennessee–Eastman 过程(TEP)

TEP由五个主要子系统组成,包括反应器、冷凝器、汽液分离器、循环压缩机和产品剥离器。
该数据集提供了21种故障,每种故障都由41个测量变量和11个操纵变量进行描述。
每个故障的训练采集了480个样本。
由于后6种故障在数据集中的描述较少,因此本文采用前15种故障来进行零样本故障诊断。
表1介绍了15种故障类别,研究的TEP的15种故障存在差异,其中一些方法的模型训练样本为零
在这里插入图片描述
TEP在向量空间中的属性描述的配置,即属性矩阵 A A A,如图所示:
在这里插入图片描述
具体的属性名称见表2。
在这里插入图片描述
每种故障都由20个细粒度的属性来描述。将表II与表I进行比较,可以很容易地从表I的陈述中得出属性描述,根据故障描述,我们在没有样本的情况下对目标故障进行模型训练。

  • 特征提取。PCA,对于每个属性,从原始的52个变量中提取20个特征,形成20 × \times × 20=400个特征的数据集
  • 属性学习器训练。三种不同的机器学习算法:线性支持向量机(LSVM)、非线性随机森林(RF)和概率朴素贝叶斯(NB)
  • 分类。最近邻搜索,欧式距离法

数据集划分:
在这里插入图片描述
实验效果:
在这里插入图片描述
对比实验:
在这里插入图片描述

真实火电厂过程

步骤与Case1相似

论文

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值