ubuntu18.04安装pytorch,配置faster-rcnn记录

运行环境

  • ubuntu18.04
  • cuda10.1
  • python3.6( Anaconda)
  • pytorch1.4
  • torchvision0.5.0

一. anaconda创建虚拟环境

  1. 创建虚拟环境
create -n python3.6 python==3.6
  1. 激活虚拟环境
 conda activate python3.6

二. pytorch安装

  1. 进入官网https://pytorch.org/,选择自己需要的版本安装
    在这里插入图片描述
不建议安装最新版本的pytorch,否则安装编译faster-rcnn的时候会编译失败,我选择的pytorch1.4

在这里插入图片描述

  1. 建议选择pip安装pytorch,不容易失败,conda容易安装失败
pip install torch==1.4.0 torchvision==0.5.0
  1. 验证pytorch是否安装成功
(python3.6) xxX@OMEN:~$ python
Python 3.6.13 |Anaconda, Inc.| (default, Feb 23 2021, 21:15:04) 
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> import torchvision
>>> torch.cuda.is_available()
True
>>> 

三. 下载faster-rcnn.pytorch代码

git clone https://github.com/jwyang/faster-rcnn.pytorch.git

此时代码下载到主目录下faster-rcnn.pytorch
在这里插入图片描述

cd faster-rcnn.pytorch && mkdir data
#安装python依赖项
pip install -r requirements.txt
#编译cuda依赖项
cd lib
sh make.sh

报错ImportError: torch.utils.ffi is deprecated. Please use cpp extensions instead.
原因是当前使用的是pytorch0.4版本的,需要切换到pytorch1.0,参考博客中的“Step1、安装”重新安装编译安装。

四. 训练模型
参考博客

  1. 下载特征提取层的预训练(pre-trained)权重
    VGG 16:
    ResNet 101 :
    下载完成后把他们放到data/pretrained_model目录下。
  2. 准备数据集
#Beyond the demo: installation for training and testing models

#Download the training, validation, test data and VOCdevkit

    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar

#Extract all of these tars into one directory named VOCdevkit

    tar xvf VOCtrainval_06-Nov-2007.tar
    tar xvf VOCtest_06-Nov-2007.tar
    tar xvf VOCdevkit_08-Jun-2007.tar

#It should have this basic structure

#    $VOCdevkit/                           # development kit
#    $VOCdevkit/VOCcode/                   # VOC utility code
#    $VOCdevkit/VOC2007                    # image sets, annotations, etc.
    # ... and several other directories ...

#    Create symlinks for the PASCAL VOC dataset

    cd $FRCN_ROOT/data
    ln -s $VOCdevkit VOCdevkit2007

#    Using symlinks is a good idea because you will likely want to share the same PASCAL dataset installation between multiple projects.

  1. 训练模型
CUDA_VISIBLE_DEVICES=0 python trainval_net.py --dataset pascal_voc --net res101 --cuda
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值