🧶Xformers是什么
xFormers 是一个由 Meta(原 Facebook Research)开发的基于 PyTorch 的优化库,专注于提升 Transformer 模型的计算效率和显存利用率。它通过定制化的 CUDA 内核、模块化组件和前沿算法优化,为深度学习任务(尤其是生成式模型如 Stable Diffusion)提供加速支持。
xFormers 提供了多种优化的注意力机制(如 Memory-Efficient Attention 和 Flash Attention),通过减少显存占用和加速矩阵运算,显著提升模型推理和训练效率。例如,在生成图像时,显存消耗可降低 30%-50%,速度提升可达 2 倍。
xFormers 是 ComfyUI 用户提升生成效率和稳定性的关键工具,尤其适合需要处理复杂工作流或显存有限的场景。
如果没有安装,可能会报类似这样的错误:
no module 'xformers'.Processing without...
这个报错出现,并不影响comfyui可以正常运行,图像还是可以正常生成的,只是速度会慢一些,如果你的显卡本身显存不大,还是建议更新安装下的。这里我用4090测试了下,本来以为可能没什么影响,实际发现就算是4090这种大显存的显卡,仍然能带来不小的性能提升。
🤩实际测试(by小梦)
测试前,系统环境参数:
4090显卡+pytorch2.5.0+cuda124+python3.12.7
测试案例(聚梦小课堂出品的电商工作流,可以一键换背景,之所以用这个案例,是因为这个案例的确有点复杂,用到了xl、flux等多类模型,大量处理步骤):
当没有xformers的时候:
第一次速度135秒;
后续大概在40~45秒之间;
安装了xformers之后
第一次速度提升到了89秒;
后续大概在30~35秒之间;
提速大概30%,可以说,效果很不错了,如果更复杂的工作流,或许效果还会更显著一点;
(要知道,老黄的刀法里边,rtx5080 比 rtx4080提升了也就不到10%...,对于免费安装个软件就能提升30%,可以说是相当的炸裂了。)
4070 12G + 32G内存 测试效果:
更新xformers之前:
第一次307秒;
后续260~350秒之间浮动;
更新xformers之后:
第一次大概240秒左右;
之后在200~300秒之间浮动;
整体来说可能可以提升20%左右。
🧸如何安装
注意:xformers版本跟你电脑的pytorch和cuda版本关系非常大,如果不兼容有可能直接把你当前的运行环境搞崩溃,所以如果崩溃了,而自己又不懂如何修复,可能要重新安装comfyui。
所以,更新环境需谨慎,如果是有编程基础,相信环境不兼容是经常遇到了,环境崩溃了修复环境就好了,无需担心。
首先需要到xformers官方的git上查看下版本兼容的问题:
比如说,小梦这边是12.4的cuda,所以要找到这行命令:
但是,请勿直接像下图这样安装:
如果是这样安装,系统会自动更新torch到最新的2.6,然后启动comfyui你就会遇到这样的提示:
comfyui环境就崩溃了,而且会遇到跟torchvison等几个package冲突的问题,很麻烦。
多次测试后,找到一个比较靠谱的组合:
torch2.5.1+cu124+xformers 0.0.28.post3版本。
这可能是这篇文章含金量最高的一句话了😄
具体安装方法:
1、进入虚拟python环境,输入cmd并回车打开命令行;
2、命令行输入:python -m pip install -U xformers==0.0.28.post3 --index-url https://download.pytorch.org/whl/cu124 然后回车
3、保证网络畅通,对,要畅通哦,然后等待安装完成 :
就可以了。
🧨使用建议
非常建议有动手能力的朋友升级下,提升整体工作效率。
✨写在最后
面向ComfyUI的新手,有一门系统性入门图文课程内容主要包括如何下载软件、如何搭建自己的工作流、关键基础节点讲解、遇到报错怎么解决等等,如果大家在学习过程中遇到什么问题,也可以直接对应的文章下留言,会持续更新相关答疑内容哈。欢迎订阅哦~
https://blog.csdn.net/jumengxiaoketang/category_12683612.html
感谢大家的支持~
还有早些时候写了两门比较基础的Stable Diffuison WebUI的基础文字课程,大家如果喜欢的话,可以按需购买,在这里首先感谢各位老板的支持和厚爱~
✨StableDiffusion系统基础课(适合啥也不会的朋友,但是得有块Nvidia显卡):
https://blog.csdn.net/jumengxiaoketang/category_12477471.html
🎆综合案例课程(适合有一点基础的朋友):
https://blog.csdn.net/jumengxiaoketang/category_12526584.html