数学建模学习笔记——主成分分析

本文介绍了数据预处理中的关键步骤,包括归一化和标准化,它们分别用于简化比较和消除量纲影响。通过10个指标的简化,作者展示了如何使用主成分分析(PCA)将数据降至2个主要指标,解决多重共线性问题,为后续的回归分析做好准备。此外,还分享了在Excel中进行样本协方差矩阵可视化的方法,帮助读者更好地理解数据分布。
摘要由CSDN通过智能技术生成

 

 

归一化——方便做比较 0.63/2.34太麻烦

标准化——消除量纲

 10个指标——>2个指标(散点图)

PCA——>多重共线性——>回归

 

 

样本协方差矩阵——复制到excel——格式(行高50)——条件格式(色阶2,2——>管理规则——编辑格式规则——>中间值(数字0)——>min(数字-1)——max(数字1)) 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值