裁剪opencv库到2Mb

文章介绍了如何通过模块编译选择必要的OpenCV组件,以及利用编译选项限制导出符号来优化动态库的大小。首先按需编译各个模块,去掉不必要的第三方库依赖,然后修改默认的导出宏,仅导出实际使用的函数,如类`Mat`,以进一步减小库的体积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  摘要:本文描述了如何对opencv进行裁剪已达到最小化,不限于使用模块编译,去除第三方库依赖,改变编译选项,限制导出符号等。
  关键字opencv导出符号

  opencv库大小优化的文章网络上很少,大部分都是针对opencv的模块进行选择编译进行最小化,当然这也是最简单有效的方式。我这里介绍限制opencv导出符号来优化库大小的一种方式。
  首先简单介绍下既然是最小化库大小那肯定是最小化动态库,因为静态库链接器会自动分析需要哪些符号将对应的符号导出不存在需要进行分析的必要。

1 按照模块编译

  第一步是按照模块编译opencv,尽可能去掉你不需要的一些模块。一般来说core是必须的,不然使用opencv的意义在哪儿。比如下面的imgcodesc,stitching,core等这些模块你得清楚你需要哪些不需要哪些,如果不清楚可以看官方文档。另外这里这么多选项该选哪个不该选哪个很难确定,最简单粗暴的办法就是一个一个试:不断将编译出的库应用到你得程序中直到没有编译错误为止(因此这一步建议编译优化的选项选择编译速度最快的方式),同时需要注意有些选项虽然对编译无影响但是会影响opencv的运行速度比如指令集优化、SSE优化之类的。
在这里插入图片描述

  同时能够去掉一些不需要依赖的一些第三方库比如有jpeg,tiff,webp等,可以根据自己的需求进行调整。
  另外需要注意的是opencv中的模块有些是相互依赖的,可以在opencv源码目录下的modules目录中找到对应的模块的文件夹中的CMakeLists.txt文件寻找ocv_define_module,其中就列举出了依赖的模块。比如示例中calib3d模块就依赖于opencv_imgproc opencv_features2d两个模块,也就是说如果要编译calib3d模块这两个模块也要带上。
在这里插入图片描述

  经过这一步一般opencv的库已经能够减小的比较小了。
  还可以根据不同平台的区别调整编译参数来更进一步降低动态库的大小比如-ffunction等。

2 限制导出符号

  静态库不会使目标库的体积过分大是因为静态库是残酷目标产物链接的,即生成对应目标产物时就已经直到哪些代码是无用的了,就可以丢弃。而动态库需要用户自己定义需要导出的符号才能限制大小,否则全符号导出目标产物体积是很大的。Msvc和gcc可以使用下面的修饰来限制导出符号。

__declspec(dllexport)
__attribute__ ((visibility ("default")))
__attribute__ ((visibility ("hidden")))

  同时clang和gcc可以用--export-dynamic-symbol指定期望导出的符号,一般用于C,因为C的函数name-mangling是清楚的,而C++的要复杂一些。
  基于以上我们可以修改opencv的默认导出函数来降低库大小,首先将opencv默认的导出宏重写,并新定义一个宏。

#ifndef CV_EXPORTS
# if (defined _WIN32 || defined WINCE || defined __CYGWIN__) && defined(CVAPI_EXPORTS)
#   define CV_EXPORTS
#   define CV_USER_DEFINE_EXPORTS __declspec(dllexport)
# elif defined __GNUC__ && __GNUC__ >= 4 && (defined(CVAPI_EXPORTS) || defined(__APPLE__))
#   define CV_USER_DEFINE_EXPORTS __attribute__ ((visibility ("default")))
#   define CV_EXPORTS __attribute__ ((visibility ("hidden")))
# endif
#endif

  这样所有的符号默认都不导出,然后只需要将自定义的导出宏替换到期望导出的符号即可。比如我这边只期望导出Mat

class CV_USER_DEFINE_EXPORTS Mat
{
public:

  此时编译出的大小为2Mb:
在这里插入图片描述

  更进一步,Mat的函数我并不是所有都是用那么就限制对应符号即可,此时仅仅留了一个库,可以看出进一步减少的空间比较小了:
在这里插入图片描述

  然后就是根据你的使用场景来选择导出的符号裁剪库大小。然后我们简单看下目前库的内容,发现其中代码占大头,导出的符号仅仅剩一个了,如果需要继续优化可能就是要在代码上进行裁剪了:

    ordinal hint RVA      name

          1    0 000B7710 ??0Mat@cv@@QEAA@XZ = ??0Mat@cv@@QEAA@XZ (public: __cdecl cv::Mat::Mat(void))

  Summary

        8000 .data
       11000 .pdata
       8B000 .rdata
        2000 .reloc
        1000 .rsrc
      185000 .text
        4000 _RDATA
<think>好的,我需要帮助用户实现一个用JavaScript在手机浏览器中运行的HTML页面,功能包括点击按钮启动摄像头,扫描区域内识别长方形物品,实现图像追踪,拍照后展示结果。首先,我得理清实现步骤。 首先,用户需要访问摄像头,这可以通过getUserMedia API实现。但要注意,现代浏览器要求HTTPS或localhost环境,用户可能需要在安全环境下测试。 接下来是区域选择。用户希望在前端划定扫描区域,可能需要一个可拖拽的矩形框。可以用CSS定位一个div作为选区,通过JavaScript处理拖拽事件来调整其位置和大小。这部分需要监听mousedown、mousemove和mouseup事件,或者对应touch事件以支持移动端。 然后是图像识别部分。识别长方形物品可能需要使用图像处理,比如tracking.js或者opencv.js。考虑到性能和易用性,tracking.js可能更合适,因为它专注于实时颜色和物体追踪。不过,用户需要的是形状识别,可能需要用opencv.js的边缘检测功能,比如Canny边缘检测,再通过轮廓检测找到矩形轮廓。 图像追踪部分,可能需要持续从摄像头捕获视频帧,进行处理。使用requestAnimationFrame循环处理每一帧,应用边缘检测和轮廓查找,找到符合长方形特征的区域,并动态更新追踪框的位置。 拍照功能则需要将视频帧绘制到canvas上,然后转换为图片。需要注意的是,拍照时应只截取追踪区域的部分,可能需要使用canvas的drawImage方法,根据追踪到的坐标和尺寸进行裁剪。 最后,将各部分整合到一个HTML文件中,确保代码结构清晰,兼容移动端浏览器。需要处理不同浏览器的兼容性问题,比如getUserMedia的前缀,以及touch事件的处理。 可能的难点在于图像识别的准确性和性能,尤其是在移动设备上实时处理可能会有延迟。可能需要调整参数,比如降低处理帧率,或者缩小处理区域以提高速度。此外,用户交互方面,拖拽选区在移动端需要处理touch事件,避免页面滚动干扰。 现在需要将以上思路转化为具体的代码步骤。首先,HTML结构包括视频元素、画布、按钮和结果展示区域。CSS样式需要固定视频和选区的位置。JavaScript部分包括初始化摄像头、处理选区拖拽、图像处理和拍照功能。 测试过程中需要注意权限问题,确保用户允许摄像头访问。另外,不同设备的摄像头分辨率可能影响识别效果,可能需要动态调整视频尺寸或缩放比例。 最终代码需要将各部分整合,确保在移动端浏览器中运行顺畅。可能需要简化某些功能,比如使用简单的颜色追踪代替形状识别,如果性能不足的话。但根据用户需求,必须实现长方形识别,因此可能需要依赖opencv.js的轮廓检测功能。</think>以下是分步骤实现方案(代码整合在最后): 一、HTML结构 ```html <!DOCTYPE html> <html> <head> <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no"> <title>图像扫描识别</title> <style> #preview { width: 100%; position: relative } #overlay { position: absolute; border: 2px solid #ff0000; display: none; } #result { margin-top: 20px } </style> </head> <body> <button id="start">开始扫描</button> <div id="preview"> <video id="video" playsinline></video> <div id="overlay"></div> </div> <canvas id="canvas" hidden></canvas> <div id="result"></div> <!-- 引入OpenCV.js --> <script async src="https://docs.opencv.org/master/opencv.js"></script> <script> // JavaScript代码在下部分 </script> </body> </html> ``` 二、实现步骤解析 1. 摄像头初始化 ```javascript let video = document.getElementById('video'); let overlay = document.getElementById('overlay'); async function initCamera() { try { const stream = await navigator.mediaDevices.getUserMedia({ video: { facingMode: 'environment' } }); video.srcObject = stream; video.play(); } catch (err) { alert('摄像头访问失败: ' + err); } } ``` 2. 图像处理核心逻辑 ```javascript function processFrame() { if (!video.videoWidth) return; // 创建OpenCV矩阵 let src = cv.imread(video); let gray = new cv.Mat(); let edges = new cv.Mat(); // 转换为灰度图 cv.cvtColor(src, gray, cv.COLOR_RGBA2GRAY); // Canny边缘检测 cv.Canny(gray, edges, 50, 200); // 查找轮廓 let contours = new cv.MatVector(); let hierarchy = new cv.Mat(); cv.findContours(edges, contours, hierarchy, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE); // 寻找最大矩形 let maxArea = 0; let maxRect = null; for (let i = 0; i < contours.size(); i++) { let cnt = contours.get(i); let area = cv.contourArea(cnt); let peri = cv.arcLength(cnt, true); let approx = new cv.Mat(); cv.approxPolyDP(cnt, approx, 0.04 * peri, true); if (approx.rows === 4 && area > 1000) { if (area > maxArea) { maxArea = area; maxRect = cv.boundingRect(approx); } } approx.delete(); } // 更新追踪框 if (maxRect) { updateOverlay(maxRect); } // 清理内存 src.delete(); gray.delete(); edges.delete(); contours.delete(); hierarchy.delete(); requestAnimationFrame(processFrame); } ``` 3. 动态追踪框更新 ```javascript function updateOverlay(rect) { const videoRatio = video.videoWidth / video.offsetWidth; overlay.style.display = 'block'; overlay.style.width = (rect.width / videoRatio) + 'px'; overlay.style.height = (rect.height / videoRatio) + 'px'; overlay.style.left = (rect.x / videoRatio) + 'px'; overlay.style.top = (rect.y / videoRatio) + 'px'; } ``` 4. 拍照功能实现 ```javascript function capture() { const canvas = document.getElementById('canvas'); const ctx = canvas.getContext('2d'); canvas.width = overlay.offsetWidth; canvas.height = overlay.offsetHeight; ctx.drawImage( video, overlay.offsetLeft * video.videoWidth / video.offsetWidth, overlay.offsetTop * video.videoHeight / video.offsetHeight, overlay.offsetWidth * video.videoWidth / video.offsetWidth, overlay.offsetHeight * video.videoHeight / video.offsetHeight, 0, 0, canvas.width, canvas.height ); const img = document.createElement('img'); img.src = canvas.toDataURL('image/png'); document.getElementById('result').appendChild(img); } ``` 5. 事件绑定与初始化 ```javascript document.getElementById('start').addEventListener('click', async () => { await initCamera(); video.addEventListener('playing', () => { // 等待OpenCV加载 if (typeof cv === 'undefined') { alert('OpenCV.js 尚未加载完成,请稍候'); return; } processFrame(); }); }); // 添加拍照按钮(可根据需要调整) const snapBtn = document.createElement('button'); snapBtn.textContent = '拍照'; snapBtn.onclick = capture; document.body.appendChild(snapBtn); ``` 三、使用注意事项 1. 必须通过HTTPS或localhost访问 2. 需要用户授权摄像头权限 3. OpenCV.js加载需要时间(约3MB) 4. 最佳识别效果需要均匀光照和清晰边界 5. 可调整Canny阈值和面积过滤参数优化识别 完整代码整合后即可保存为.html文件直接运行,建议在Chrome移动版测试。实际使用中可能需要根据具体需求调整识别参数和界面样式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值