一、问题描述
实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列。
如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列)。
必须原地修改,只允许使用额外常数空间。
以下是一些例子,输入位于左侧列,其相应输出位于右侧列。1,2,3
→ 1,3,2
3,2,1
→ 1,2,3
1,1,5
→ 1,5,1
二、解题思路
本题的思路官方的解答,此动图十分形象的表达了解题思路:
1.首先从右往左遍历,寻找第一个不单调递增的点,如果不存在则属于不存在下一个更大的数,则翻转数组
2.如果存在则先确定第一个不单调递增的点为需要交换的位置i,该位置的值为tmp
3.遍历i到n-1(数组的长度为n)的位置,找到大于tmp数且在该数右边的数都小于tmp,记该数的位置为l
4.交换i跟l位置的数,并排序i位置后面的所有数
三、代码
class Solution(object):
def nextPermutation(self, nums):
"""
:type nums: List[int]
:rtype: void Do not return anything, modify nums in-place instead.
"""
#next bigger sort
n,tmp = len(nums),nums[-1]
i=n-1
#find the first descreasing position
while i > 0 and nums[i-1] >= tmp:
i -= 1
tmp = nums[i]
if i == 0:
for j in range(n//2):
nums[j],nums[n-1-j]=nums[n-1-j],nums[j]
else:
bigger_num=tmp
tmp=nums[i-1]
l=i
while l<n-1 and nums[l+1] > tmp and nums[l+1] <= bigger_num:
l += 1
bigger_num=nums[l]
nums[i-1],nums[l] = nums[l],nums[i-1]
for k in range((n-i)//2):
nums[i+k],nums[-k-1] = nums[-k-1],nums[i+k]