给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
示例 1:
输入: nums: [1, 1, 1, 1, 1], S: 3
输出: 5
解释:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
一共有5种方法让最终目标和为3。
注意:
数组非空,且长度不会超过20。
初始的数组的和不会超过1000。
保证返回的最终结果能被32位整数存下。
暴力搜索所有数+或-的状态
private static int ccnt = 0;
public static int findTargetSumWays(int[] nums, int S) {
getSum(nums,0,S);
return ccnt;
}
private static void getSum(int[] nums,int i,int S) {
if(i == nums.length){
if(0 == S){
ccnt++;
}
return ;
}
getSum(nums,i + 1,S + nums[i]);
getSum(nums,i + 1,S - nums[i]);
}
优化
可以转化为01背包问题。
定义S(P)+ S(N) = C 其中S(p) 是集合中的正数集合 而S(N)是集合中的负数集合 而T是集合中的全部数据集
而 S(P)- S(N) = S(目标值) 其中 S是 目标值
S(P) - S(N) + (S(P)+ S(N) ) = S + (S(P)+ S(N) ) ==> 2S(P) = S+C ==> S(P) = (S+C) >> 1
定义:dp[i]代表遍历到数组第i个数的时候能组成目标数值的种类个数
初始化: dp[0] = 1
状态转移方程: dp[j] = dp[j] + dp[j-nums[i]]
public static int findTargetSumWays_OPT(int[] nums, int S) {
int len = nums.length;
int sum = 0;
for(int i = 0;i < len;i++) {
sum += nums[i];
}
int tar = sum + S;
if(tar % 2==1 || sum < S) {
return 0;
}
tar /=2;
int[] dp = new int[tar+1]; // 定义dp[i]为 第i个数的时候和为S的方法数
dp[0] = 1;
for(int i = 0;i < len;i++) {
for(int j = tar;j >= nums[i] ;j--) {
dp[j] += dp[j - nums[i]] ;
}
}
return dp[tar];
}