BERT、GPT

词嵌入的发展

NLP模型训练时需要对文本文件进行编码,转化为数值的形式。

Word2Vec和GloVe

对词还有词与词之间的关系(例如近义、反义、从属、时态等关系)进行编码,但不考虑语境。

ELMo

  • 本质:双向LSTM
  • 流程图
    在这里插入图片描述

ULM-FiT

ULMFiT(Universal Language Model Fine-tuning)是一种基于微调的通用语言模型。可以实现NLP迁移学习

OpenAI Transformer

  • 本质:多个Transformer的Decoder(仅考虑前序输入的影响)
  • 目的:预测下一个词
  • 与Decoder的差别:无Encoder-Decoder Attention层

BERT

2018年google的BERT(Bidirectional Encoder Representations from Transformers)可以理解为已经训练好的多层Transformer的encoder。包括预训练和微调两个步骤。
在这里插入图片描述
From:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Pre-training

  • 任务1:MLM
    Masked Language Model,预测被屏蔽或者代替的目标词
  • 任务2:句子位置
    判断句子B是否是句子A后面相邻的句子

Fine-Turning

作为预训练下游的模型完成任务

  • 输入:单一文本或文本对
  • 文本对应用
    • 文本释义
    • 假设条件对
    • 问答
    • 文本分类或标注

使用

Google Colab上的BERT FineTuning with Cloud TPUs

GPT

和BERT的差别

内容 BERT GPT
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值