C题 掌握魔法の东东
题目描述
东东在老家农村无聊,想种田。农田有 n 块,编号从 1~n。种田要灌氵
众所周知东东是一个魔法师,他可以消耗一定的 MP 在一块田上施展魔法,使得黄河之水天上来。他也可以消耗一定的 MP 在两块田的渠上建立传送门,使得这块田引用那块有水的田的水。 (1<=n<=3e2)
黄河之水天上来的消耗是 Wi,i 是农田编号 (1<=Wi<=1e5)
建立传送门的消耗是 Pij,i、j 是农田编号 (1<= Pij <=1e5, Pij = Pji, Pii =0)
东东为所有的田灌氵的最小消耗
Input
第1行:一个数n
第2行到第n+1行:数wi
第n+2行到第2n+1行:矩阵即pij矩阵
Output
东东最小消耗的MP值
Example
Input
4
5
4
4
3
0 2 2 2
2 0 3 3
2 3 0 4
2 3 4 0
Output
9
解题思路:
根据本题题意 如果要灌溉所有的田地,要从有水源的地方到各个点,而“天上”也称为一个初始点。所有水源从这里开始,成为一个最小生成树问题
kruscal最小生成树:记录出点,入点,和该边的权值,按权值从小到大排序,从中依次取出比那,如果这个变得两个端点不在集合中,就合并(并查集)
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<bits/stdc++.h>
using namespace std;
const int maxn=3e2+5;
struct edge{
int u,v,w;
bool operator < (const edge &e)
{
return w<e.w;
}
}e[maxn*maxn];
int tot=1,n;
int ans=0;
int par[maxn];
int chu(int n)
{
for(int i=0;i<=n;i++)
{
par[i]=i;
}
}
int find(int x)
{
return par[x]==x ? x : par[x]=find(par[x]);
}
bool unit(int x,int y)
{
x=find(x);
y=find(y);
if(x==y) return false;
par[x]=y;
return true;
}
void kruskal()
{
int cnt=0;
for(int i=1;i<=tot;i++)
{
if(unit(e[i].u,e[i].v))
{
cnt++;
ans+=e[i].w;
}
if(cnt==n) return;
}
// return -1;
}
int main()
{
// int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&e[tot].w);
e[tot].u=0;
e[tot].v=i;
tot++;
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
// int w;
scanf("%d",&e[tot].w);
if(i==j) continue;
e[tot].u=i;
e[tot].v=j;
// e[tot].w=w;
tot++;
}
}
tot--;
sort(e+1,e+tot+1);
chu(n);
kruskal();
cout<<ans<<endl;
return 0;
}