leetcode-47.全排列 II

该博客讨论了如何使用深度优先搜索(DFS)和回溯法解决包含重复数字的序列全排列问题。通过实现`canSwap`函数来判断是否可以交换元素,避免在排列中出现重复组合。代码示例展示了如何在C++中实现这一算法,最终返回所有不重复的全排列组合。
摘要由CSDN通过智能技术生成

深度优先搜索(dfs)

回溯法


题目详情

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。


示例1:

输入:nums = [1,1,2]
输出:
[[1,1,2],
 [1,2,1],
 [2,1,1]]

示例2:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

先参考:无重复数字的全排列题:leetcode-46.全排列
本题和46的区别,需要有一个判断能否swap的函数,即判断从level到dfs的深层i,是否有相同数字,如果nums[i] == nums[level] ,则不能交换i和level,因为无变化…

我的代码:

class Solution 
{
public:
    bool canSwap(vector<int>& nums, int begin, int end)
    {
        for (int i = begin; i < end; ++i)
        {
            if (nums[i] == nums[end])
            return false;
        }
        return true;
    }
    void backtracking(vector<int> &nums, int level, vector<vector<int>> &ans)
    {
        if (level == nums.size() - 1)           //终止条件,全排列即dfs到第nums.size()-1层时为一个解
        {
            ans.push_back(nums);
            return;
        }
        for (int i = level; i < nums.size(); ++i)   //从第level层(起点)开始向下dfs
        {
            if (canSwap(nums, level, i))    //能交换才交换(交换有变化)
            {
            swap(nums[i], nums[level]);             //交换level层和它下面其他任一层的值从而构成排列
            backtracking(nums, level+1, ans);       //递归下去,改变起点为level+1,从而实现暴力全搜索
            swap(nums[i], nums[level]);             //回溯,恢复刚才这个作用域内交换顺序的两个
            }
        }
    }
    vector<vector<int>> permuteUnique(vector<int>& nums) 
    {
        vector<vector<int>> ans;
        backtracking(nums, 0, ans);                 //从0开始
        return ans;
    }
};

涉及知识点:

1.深度优先搜索(dfs)

深度优先搜索(depth-first seach,DFS)在搜索到一个新的节点时,立即对该新节点进行遍历;因此遍历需要用先入后出的栈来实现,也可以通过与栈等价的递归来实现。对于树结构而言,由于总是对新节点调用遍历,因此看起来是向着“深”的方向前进。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ggaoda

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值