机器学习|线性回归 公式推导 模型扩展(脊回归、岭回归、多重共线性、样本权重)

本文详细介绍了线性回归的参数求解过程,包括基础模型及如何扩展到脊回归和岭回归,同时探讨了引入样本权重的情况,以及处理多重共线性和样本数不足的问题。
摘要由CSDN通过智能技术生成

摘要

线性回归是最基本的机器学习模型之一,它可以探索自变量和因变量之间的相关性,被广泛应用于各个领域。本篇博客侧重于模型的参数推导,并在此基础上,对线性回归基础模型进行扩展,包括引入正则化项、引入样本权重等。

一、参数求解

面对数据集 D = { x i , y i } i = 1 N ( x i ∈ R d , y i ∈ R ) D={\{x_i, y_i\}^{N}_{i=1}}(x_i \in R^{d},y_i \in R) D={ xi,yi}i=1N(xiRdyiR),我们构造线性回归模型 y n × 1 = X n × d w d × 1 y_{n\times 1}=X_{n\times d}w_{d\times 1} yn×1=Xn×dwd×1,求解一组系数 w w w,使平方损失函数 L = 1 2 N ∑ i = 1 N ( x i w − y i ) 2 = ∣ ∣ X w − y ∣ ∣ 2 L=\frac{1}{2N}\sum^{N}_{i=1}(x_iw-y_i) ^2=||Xw-y||^2 L=2N1i=1N(xiwyi)2=Xwy2达到最小。即,在已知数据集上,求解一组系数 w w w,使经验风险 R e m p ( w ) R_{emp}(w) Remp(w)最小。

根据损失函数,经验风险 R e m p ( w ) R_{emp}(w) Remp(w)可表示为:
R e m p ( w ) R_{emp}(w) Remp(w)
= 1 2 N ( X w − y ) T ( X w − y ) =\frac{1}{2N}(Xw- y)^{T}(Xw - y) =2N1(Xwy)T(Xwy)
= 1 2 N ( w T X T − y T ) ( X w − y ) =\frac{1}{2N}(w^{T}X^{T}- y^{T})(Xw - y) =2N1(wTXTyT)(Xwy)
= 1 2 N ( w T X T X w − w T X T y − y T X w + y T Y ) =\frac{1}{2N}(w^{T}X^{T}X w - w^{T}X^{T} y-y^{T}X w + y^{T}Y) =2N1(wTXTXww

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值