【Matlab】基于径向基神经网络的时间序列预测(Excel可直接替换数据)

本文介绍了基于径向基神经网络(RBFNN)的时间序列预测方法,详细阐述了模型原理、数学公式,并提供了从数据准备、网络结构、模型训练到预测结果的完整过程。使用Matlab实现,结合Excel数据处理,适用于非线性时间序列预测问题。
摘要由CSDN通过智能技术生成

【Matlab】基于径向基神经网络的时间序列预测(Excel可直接替换数据)

1.模型原理

基于径向基神经网络(Radial Basis Function Neural Network,RBFNN)的时间序列预测是一种基于神经网络的预测方法,用于处理时间序列数据。它采用径向基函数作为激活函数,并利用神经网络的非线性映射能力,通过训练网络参数来拟合时间序列数据,实现时间序列的预测。以下是基于径向基神经网络的时间序列预测的详细原理:

  1. 数据准备:

    • 首先,将原始的时间序列数据转换为监督学习的形式。将时间序列数据划分为输入特征和对应的目标变量。
    • 通常采用滞后观测值作为输入特征,用来预测未来时刻的目标变量。
  2. 径向基函数:

    • 径向基函数是RBFNN的核心组成部分,它用于计算神经网络的隐含层输出。在时间序列预测中,通常使用高斯径向基函数。
    • 一个常用的高斯径向基函数可以表示为: ϕ ( x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

敲代码两年半的练习生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值