VScode使用tensorflow全程记录

如何使用vscode进行tensorflow开发

在经过多次试验,笔者发现使用vscode做个人开发,轻量,便捷。相比于Anconda,减少了一些复杂的环境,对新手学习使用极为友好。
我先给大家分享这些工具,以便大家选择和下载。
vscode免费下载网站:https://code.visualstudio.com/
pycharm 云盘下载链接:https://pan.baidu.com/s/1iEqP8kmSI43MCTcMjoBHkw 提取码:07p4
python3.8云盘下载链接:链接:https://pan.baidu.com/s/1I-ySHIm4gW6ot3xgS1SbrA 提取码:kftp

python安装

python安装这里没什么好说的,按照提示一步一步走就可以。安装完成以后,在cmd窗口里键入
python 来检查是否安装成功。
现在版本较高的python可以不用自己配置环境变量。

下载pip

pip22的tar包
链接:https://pan.baidu.com/s/1hgvGXwS5qOUtgmBBKWLmfw
提取码:i45p
也可以去官网下载:https://pypi.org/project/pip/
使用压缩软件解压即可。解压后文件夹中有如下文件:

我么进入到cmd界面 使用cd指令进入这个文件夹。比如我的文件在

那么我进入cmd输入下图指令

随后输入python setup.py install进行安装
安装结束后直接输入pip进行检验。

查看CUDA

在本机有GPU的前提下,查看CUDA
我们进入显卡控制面板
在这里插入图片描述
查看系统信息,可以发现我的CUDA版本是11.8.那么我们就下载该版本的CUDA即可。
CUDA下载地址:https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html
也可以进入清华镜像 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/

如果发现电脑显卡驱动配置过低,可以到官网下载驱动进行更新。

除了下载CUDA以外,我们还需要下载CUDNN
可是我们如何知道我们需要下载什么版本的CUDNN呢?
进入cmd界面,输入nvcc -V
在这里插入图片描述
蓝色处就是版本。下载对应的版本即可。当然了,此方法也可用于检验CUDA是否下载成功。

CUDNN下载地址 https://developer.nvidia.com/rdp/cudnn-archive

这个CUDNN下载时会出现一些类似登录失败的问题,那么如何解决呢?
我们直接进入到这个界面
在这里插入图片描述
鼠标挪到圈圈处,右键复制链接地址,然后使用迅雷下载即可。
下载完成后,我们需要进入你安装cudnn的bin文件夹,复制下来地址,到环境变量的path中去添加路径
在这里插入图片描述

完成后,我们就可以开始下载tensorflow啦。

tensorflow下载安装

一般情况下我们会选择到官网下载。可是实在是太慢了。所以我们要配置一下pip使用清华镜像。

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

当然了,也可以选择其他镜像。这里不再赘述。
然后使用pip install tensorflow 即可

等待下载完成…

tensorflow会直接下载到我们python安装的文件夹中
下载后,我们使用 pip show tensorflow 来查看我们是否下载成功
在这里插入图片描述

配置vscode

下载好vscode以后,我们对他进行配置。

我们直接点击这个圈里的按钮
在这里插入图片描述
搜索python,点击下载第一个即可。

但这时候我们import tensorflow as tf 时,会发现tensorflow并没有被引入。我们明明下载了呀!
不要慌,我们按快捷键 control + shift +p调出终端命令行,输入python:select interpreter
在这里插入图片描述
我们会发现有两个python。选择有我们本机路径的那一个,就可以使用tensorflow啦
但是又会出现一个问题
但我们跑例程时,输出终端会报错:

Could not locate zlibwapi.dll. Please make sure it is in your library path!
在这里插入图片描述

这是因为我们少了一个dll,我给大家提供链接,大家自行下载
zlibwapi.dll :
链接:https://pan.baidu.com/s/1tk_e8eAQa01TVMZA9U_BDg
提取码:emtr
下载完成后放到c:\windows\system32中。

开始你的学习吧!

### 如何在 VSCode 中安装 TensorFlow #### 使用 pip 安装 TensorFlow 可以在终端通过 `pip` 来安装特定版本的 TensorFlow。确保已激活正确的 Python 虚拟环境后,在命令行执行如下指令来安装指定版本的 TensorFlow 库[^3]。 ```bash pip install tensorflow==2.17.1 ``` 这一步骤能够快速完成 TensorFlow 的安装工作,适用于大多数常规情况下的开发需求。 #### 创建并配置 Python 虚拟环境 为了保持项目的独立性和整洁性,建议先创建一个新的 Python 虚拟环境再进行 TensorFlow 的安装。这样可以有效避免不同项目之间的依赖冲突问题[^2]。 ```bash python -m venv my_tensorflow_env source my_tensorflow_env/bin/activate # Linux 或 macOS my_tensorflow_env\Scripts\activate # Windows ``` 接着按照前述方法利用 `pip` 命令向此环境中添加 TensorFlow 及其他所需库文件。 #### 配置 Anaconda 环境 对于那些偏好使用 Conda 工具链管理软件包和环境的人来说,可以通过 Anaconda Navigator GUI 或者直接通过 conda CLI 新建专门用于 TensorFlow 开发的工作区。具体来说就是定义一个名为 "tf" 的新环境,并在里面安装合适的 TensorFlow 版本以及调整设置使得 VSCode 正确识别该环境中的 Python 解释器位置[^4]。 ```json { "python.pythonPath": "X:\\Anaconda\\envs\\tf\\python.exe" } ``` 这段 JSON 代码片段应该被加入到 `.vscode/settings.json` 文件里以便让编辑器知道要使用Python 执行程序的确切路径。 #### 测试安装是否成功 最后验证 TensorFlow 是否正确无误地集成到了当前环境下: ```python import tensorflow as tf print(tf.__version__) ``` 如果以上步骤都顺利完成,则会看到打印出来的 TensorFlow 版本号,证明安装过程没有任何差错[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值