1. 数据
1.1数据的定义
-
在信息技术中,数据也被理解为以数字形式存储的信息(尽管数据不仅限于已数字化的信息,而且与数据库中的数据相同,数据管理的原则也适用于纸面上的数据)
-
数据既是对其所代表对象的解释,也是必须解释的对象
1.2数据与信息的关系
-
数据被称为“信息的原材料”,而信息则被称为在上下文语境中的数据
-
信息是经过加工过的
-
数据和信息是可以互换的
1.3 数据与事实的关系
-
数据是这个世界中与某个事实结合在一起的一种真实表达,是事实并不总是简单或者直接的,数据是一种表示方法
2 数据管理概述
2.1数据管理的定义
-
数据管理(Data Management)是为了交付、控制、保护并提示数据和信息资产的价值,在其整个生命周期中制定计划、制度、规程和实践活动,并执行和监督的过程
3 数据管理12项原则
3.1 数据是有独特属性的资产
-
数据是可复制的,使用过程中不会产生消耗,是不容易估值的,数据是无形的,数据本来是具有价值的,在使用过程中体现价值
3.2 数据的价值可以用经济术语来表示
-
数据是有独特属性的资产
-
数据的价值可以用经济术语表示
-
DAMA 用的基本还是成本法
-
获取数据的成本
-
存储数据的成本
-
-
国家认可的数据价值评估模型的公司:光大银行和南方电网
3.3 管理数据意味着对数据的质量管理
-
确保数据符合应用的要求是数据管理的首要目标。为了管理质量,组织必须了解利益相关方对质量的要求,并根据这些要求度量数据。
-
数据 ROT (冗余的、过时的、不重要的) 降至最低 ==》 就表示提高数据质量
3.4 管理数据需要元数据
-
用于管理和如何使用数据的数据都称为元数据
-
元数据描述了一个组织拥有什么数据,它代表什么、如何被分类、它来自哪里、在组织之内如何移动、如何在使用中演进、谁可以使用它以及是否为高质量数据
-
从业务层面来讲: 元数据就是:数据资源目录
-
元数据管理是全面改进数据管理的起点
3.5 数据管理需要规划
-
即便是小型组织,也可能有复杂的技术和业务流程蓝图。数据在多个地方被创建,且因为使用需要在很多存储位置间移动,因而需要做一些协调工作来保持最终结果的一致,需要从架构和流程的角度进行规划
3.6 数据管理须驱动信息技术决策
-
数据和数据管理与信息技术和信息技术管理紧密结合,管理数据需要一种方法确保技术服务于而不是驱动组织的战略数据需求。
-
数字化转型应 该由业务部门来驱动,由IT部门来做许多工作的具体执行。
3.7 数据管理是跨职能的工作
-
数据管理需要一系列的技能和专业知识因此单个团队无法管理组织的所有数据,数据管理需要技术能力、非技术技能以及协作能力。
3.8 数据管理需要企业级视角
虽然数据管理存在很多专用的应用程序,但是他不行能够有效的被应用与整个企业,这就是为什么数据管理和数据治理是交织在一起的原因之一。
-
目的:打通数据孤岛
-
如何打通数据孤岛:(1)国外:主数据 (2)国内:数据中台
3.9 数据管理需要多角度思考
数据是流动的,数据管理必须不断发展演进,以跟上数据创建的方式应用的方式和消费者的变化。
3.10 数据管理需要全生命周期的管理,不同类型数据又不同的生命周期特征
-
创建和使用是数据生命周期中的关键点
-
数据质量管理必须贯穿整个数据生命周期
-
元数据质量管理必须贯穿整个数据生命周期
-
数据管理还包括确保数据安全,并降低与数据相关的风险
-
数据管理工作应聚焦于关键数据
3.11 数据管理包括管理数据的相关的风险
-
数据不仅代表价值,也代表风险
数据除了是一种资产外,还代表着组织的风险,数据可能会丢失,被盗用或误用。组织必须考虑其使用数据伦理的影响。数据相关风险必须作为数据生命周期的一部分进行管理。
3.12 有效的数据管理需要领导层承担责任
-
首席数据官(CDO)(chief data officer)
-
首席信息官:主要负责IT方面,例如:购买什么类型的数据库或数据是否上云
数据管理设计一些复杂的过程,需要协调,协作和承诺,为了达到目标,不仅需要管理技巧,还需要来自领导层的愿景和使命。
4. 数据管理主要驱动力
-
使组织能够从其数据资产中获取价值
5. 数据管理目标
最直接的目标:数据质量
最终目标:数据价值
6. 数据管理框架
1.战略一致性模型和阿姆斯特丹信息模型
-
主要是描述业务与IT的一致性,业务驱动IT
-
DAMA-DMBOK框架
-
DAMA车轮图
-
-
DAMA环境因素六边形图
-
知识领域语境关系图
7. 战略规划的可交付成果
-
数据管理章程
-
包括总体愿景、业务案例、目标、指导原则、成功衡量标准、关键成功因素、可识别的风险、运营模式等
-
-
数据管理范围声明
-
规划目的和目标(通常为3 年)。以及负责实现这些目标的角色、组织和领导
-
-
数据管理实施路线图
-
确定特定计划、项目、任务分配和交付里程碑
-
8. 数据管理战略组成
-
令人信服的数据管理愿景
-
数据管理的商业案例总结
-
指导原则、价值观和管理观点
-
数据管理的使命和长期目标
-
数据管理成功的建议措施
-
符合SMART原则(具体、可衡量、可操作、现实、有时间限制)的短期(12~24个月)数据管理计划目标
-
对数据管理角色和组织的描述,以及对其职责和决策权的总结,
数据管理程序组件和初始化任务
-
具体明确范围的优先工作计划
-
一份包含项目和行动任务的实施路线图草案