基于Pytorch自带的BatchNorm批归一化实现GroupNorm组归一化


import torch
import torch.nn as nn

class GroupNorm(nn.Module):
    def __init__(self, G, N):
        super(GroupNorm, self).__init__()
        self.G = G
        self.bn = nn.BatchNorm2d(N * self.G, track_running_stats=False)  # 批量归一化层
    def forward(self, x):
        N, C, H, W = x.shape
        x = x.reshape(1, N * self.G,  C // self.G, H * W)
        x = self.bn(x)
        return x.reshape(N, C, H, W)

if __name__ == '__main__':
    N, C, H, W = 16, 2, 5, 5
    embedding = torch.randn(N, C, H, W)
    layer_norm = nn.GroupNorm(2, C)
    my_layer_norm = GroupNorm(2, N)

    print(layer_norm(embedding))
    print(my_layer_norm(embedding))



基于自带的批归一化层实现组归一化层

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HAO_keshui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值