三羊转债上市价格预测

本文分析了三羊转债的基本信息,如评级、发行规模等,计算了当前转股价值并与其他相似转债进行了对比,给出了20.49%的溢价率预测,预估上市价格在121.61元到128.2元之间,详细介绍了可转债的交易规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三羊转债-127097

基本信息

转债名称:三羊转债,评级:A+,发行规模:2.1亿元。

正股名称:三羊马,今日收盘价:38.0元,转股价格:37.65元。

当前转股价值 = 转债面值 / 转股价格 * 正股价格 = 100.93元。

相似转债

转债名称转债最新价纯债溢价率发行规模评级
韵达转债116.623.924.5AA+
密卫转债108.23117.088.72388AA-
嘉诚转债112.31924.48.0AA-
大秦转债115.24910.61320.0AAA
宏川转债130.58835.776.7AA-
长久转债130.48316.627.0AA

综合评定

根据相关性综合评定,给出的溢价率为:20.49%。

上市价格预估(溢价率):100.93 * (1 + 20.49%) = 121.61元。

上市价格预估(动态拟合):128.2元。

预测图

096f8e60b112e60e83e584d45a6e1496.jpeg

说明:
1、溢价率预测是根据同类型转债的中位数进行的预测。
2、动态拟合是根据目前债市的热度进行的预测。
3、转债第一天价格大概率落在这两个之间。
4、转债第一天价格同时受上市正股走势影响。

附录 可转债交易规则


可转债基本交易规则参见下表:

内容沪市深市
交易时间T+0,代码11开头T+0,代码12开头
最小报价单位0.001元0.001元
最小交易单位10张10张
开盘竞价集合竞价
9:15–9:20可下单,可撤单;
9:20–9:25可下单,不可撤单
集合竞价
9:15–9:20可下单,可撤单;
9:20–9:25可下单,不可撤单
收盘竞价连续竞价
14:57–15:00可下单,可撤单
集合竞价
14:57–15:00可下单,不可撤单
出价范围(新债)9:15–9:25:70~130,超出废单
9:25-15:00:当前价的±10%
-> 14:57前最高143
-> 14:57-15:00最高157.3
9:15–9:25:70~130,超出废单
9:25-15:00:当前价的±10%
-> 14:57前最高143
-> 14:57-15:00最高157.3
出价范围(非新债)前一日收盘价,涨跌±20%,超出废单前一日收盘价,涨跌±20%,超出废单
停牌规则(新债)涨跌±20%,熔断30分钟;
涨跌±30%,熔断至14:57分。
停牌期间,不可委托,不可撤卖,可撤买。
涨跌±20%,熔断30分钟;
涨跌±30%,熔断至14:57分。
停牌期间,可委托,可撤单。
出价范围(非新债)无,±20%涨跌幅限制无,±20%涨跌幅限制

最后

本文,

包括本文所有数据图表均由作者Python程序而来,实属不易!~~

请帮忙点赞,分享和在看,谢谢!~

如有低频量化的交流,请留言,谢谢!~

d77cef51d80f34e1296b0bc62bfe6daf.gif 676289c50b352fa3a1bb7ee608a02e76.gif
<think>嗯,用户问的是关于C++实现全排列的算法,并且提到了“献瑞”作为示例场景。首先,我需要确定用户的具体需求。他们可能是在解决类似“献瑞”这样的数学谜题,需要生成所有可能的排列组合来找到符合条件的解。这类问题通常涉及不同汉字代表不同数字,且首位不能为零的情况。 接下来,我需要回忆C++中实现全排列的方法。标准库中的`next_permutation`函数是个不错的选择,它可以按字典序生成排列,方便且高效。不过,用户可能不太清楚如何使用这个函数,特别是结合具体问题的时候。比如,如何处理不重复的数字以及如何排除首位为零的情况。 然后,我需要考虑如何将“献瑞”的例子融入代码中。这个谜题可能需要将汉字映射到不同的数字,并满足特定的加法规则。例如,祥、瑞、生、辉、、献、气这些字对应的数字各不相同,且首位不能为零。因此,代码需要生成这些字的全排列,然后验证每个排列是否满足加法条件。 用户可能还希望看到具体的代码示例,所以需要编写一个使用`next_permutation`的示例,并加上注释说明每一步的作用。同时,要注意处理可能的边界情况,比如数组的初始顺序是否正确,如何跳过重复的排列等。 另外,用户提到的引用中有关于排除数字4的例子,这可能与处理数字时的过滤条件有关,但当前问题主要在于全排列,所以可能需要将重点放在排列生成和条件验证上。 最后,确保回答结构清晰,分步骤说明,并生成相关问题,帮助用户进一步理解或扩展知识。比如,如何优化全排列算法,如何处理重复元素,或者如何应用在类似的数学谜题中。</think>### C++实现全排列算法详解(含"献瑞"示例) #### 一、标准库实现方法 C++标准库提供了`next_permutation`函数,可高效生成全排列。时间复杂度为$O(n!)$,适合处理8-10个元素的情况[^2]。 ```cpp #include <algorithm> #include <vector> void fullPermutation() { std::vector<int> nums = {0,1,2,3,4,5,6,7,8,9}; do { // 处理当前排列 } while(std::next_permutation(nums.begin(), nums.end())); } ``` #### 二、"献瑞"问题实现 根据引用[3]的加法算式: ``` 祥 瑞 生 辉 + 献 瑞 = 生 瑞 气 ``` 需要满足: 1. 不同汉字对应不同数字 2. 祥和不能为0 3. 满足加法等式 ```cpp #include <algorithm> #include <iostream> int main() { int nums[] = {0,1,2,3,5,6,7,8,9}; // 排除数字4(根据引用[4]的示例逻辑) do { if(nums[0] == 0 || nums[4] == 0) continue; // 祥、不能为0 int 祥 = nums[0], 瑞 = nums[1], 生 = nums[2], 辉 = nums[3]; int = nums[4], = nums[5], 献 = nums[6], 气 = nums[7]; int 加数 = 祥*1000 + 瑞*100 + 生*10 + 辉; int 被加数 = *1000 + *100 + 献*10 + 瑞; int 和 = *10000 + *1000 + 生*100 + 瑞*10 + 气; if(加数 + 被加数 == 和) { std::cout << "解: " << 加数 << " + " << 被加数 << " = " << 和 << std::endl; } } while(std::next_permutation(nums, nums+9)); return 0; } ``` #### 、算法优化要点 1. **剪枝策略**:在排列过程中提前终止不符合条件的路径 2. **去重处理**:对包含重复元素的数组使用`std::unique` 3. **位运算优化**:使用位掩码记录已用数字(参考引用[1]的动态规划思路)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值