使用ViT(Vision transformer)来训练Cifar10数据集

使用ViT(Vision transformer)来训练Cifar10数据集

下面的代码是使用ViT训练Cifar10数据集的demo。

"""
特征提取的实例:
利用迁移学习中特征提取的方法来对CIFAR-10数据集实现对10类无体的分类
"""
import torch
from torch import nn
import torchvision
import torchvision.transforms as transforms
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np
from vit_pytorch import ViT, SimpleViT

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


def main():
    # 加载和预处理数据集
    trans_train = transforms.Compose(
        [transforms.RandomResizedCrop(224),  # 将给定图像随机裁剪为不同的大小和宽高比,然后缩放所裁剪得到的图像为制定的大小;
         # (即先随机采集,然后对裁剪得到的图像缩放为同一大小) 默认scale=(0.08, 1.0)
         transforms.RandomHorizontalFlip(),  # 以给定的概率随机水平旋转给定的PIL的图像,默认为0.5;
         transforms.ToTensor(),
         transforms.Normalize(mean=[0.485, 0.456, 0.406],
                              std=[0.229, 0.224, 0.225])])

    trans_valid = transforms.Compose(
        [transforms.Resize(256),  # 是按照比例把图像最小的一个边长放缩到256,另一边按照相同比例放缩。
         transforms.CenterCrop(224),  # 依据给定的size从中心裁剪
         transforms.ToTensor(),  # 将PIL Image或者 ndarray 转换为tensor,并且归一化至[0-1]
         # 归一化至[0-1]是直接除以255,若自己的ndarray数据尺度有变化,则需要自行修改。
         transforms.Normalize(mean=[0.485, 0.456, 0.406]</
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值