资源限制
时间限制:1.0s 内存限制:512.0MB
问题描述
给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、同一列或同一条对角线上。问总共有多少种放法?n小于等于8。
输入格式
输入的第一行为一个整数n,表示棋盘的大小。
接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,表示对应的位置不可以放皇后。
输出格式
输出一个整数,表示总共有多少种放法。
样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
2
样例输入
4
1 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
0
解题思路:
说实话,刚看到这一题我是百思不得其解的,首先我对国际象棋一概不知(后来才知跟这个没关系),其次在我主观臆断里面,n个棋子在n * n的矩阵中怎么可能都满足不同行、不同列、不在同一个对角线上呀,于是乎我大言不惭(不知羞耻)的开始面向百度编程,通过一个老哥的解释我顿时茅塞顿开,悔不当初┭┮﹏┭┮。
言归正传,开始讲解思路。代码段落分为判断函数段(包括黑白),放置函数段(包括黑白),main函数。过程为:先放置黑棋子,利用深度优先和for循环,差不多整个棋盘都访问了一遍,每放置一次要进行条件判断,如果判断成功则可以继续递归调用,否则这路方案不行gg。接着黑棋子布局完毕,开始布置白棋子,道理和黑棋子一致。最后输出成功的次数。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 10;
int n;
int map_Q[maxn][maxn];
int posb[maxn]={0}; //黑皇后
int posw[maxn]={0}; //白皇后
int ans;
bool checkw( int cur) //检查函数
{
for( int i = 1; i < cur; i++)
if( posw[i] == posw[cur] || abs(i-cur) == abs(posw[i]-posw[cur])) //如果列相等或者在斜对角线上
return false;
return true;
}
bool checkb( int cur) //检查函数
{
for( int i = 1; i < cur; i++)
if( posb[i] == posb[cur] || abs(i-cur) == abs(posb[i]-posb[cur])) //如果列相等或者在斜对角线上
return false;
return true;
}
void dfs_white( int cur) //深度优先算法
{
if( cur == n+1) //白皇后也全部放完,次数+1
{
ans++;
}
for( int i = 1; i <= n; i++)
{
if( posb[cur] == i) //表示第cur列的第i行位置已经被黑皇后占用,
continue; //结束当前循环,i+1
if( map_Q[cur][i] == 0) //再判断前提条件是否成立
continue;
posw[cur] = i; //尝试把第cur列的白皇后放在第i行上
if( checkw(cur)) //判断能否放置白皇后
dfs_white(cur+1); //递归
}
}
void dfs_black( int cur)
{
if( cur == n+1) //当黑皇后处理完时,再处理白皇后
{
dfs_white(1);
}
for( int i = 1; i <= n; i++)
{
if( map_Q[cur][i] == 0) //如果第cur列第i行满足放皇后的前提条件即 mp[cur][i] == 1
continue; //如果不满足,则结束当前循环,进行下一次循环即i+1。
posb[cur] = i; //就尝试把第cur列的黑皇后放在第i行上
if( checkb(cur)) //然后判断该尝试是否成立,如成立,则进行递归,如不成立,则尝试把当前列的黑皇后放在下一行(i+1行)上。
dfs_black(cur+1); //递归
}
}
int main()
{
cin >> n;
for( int i = 1; i <= n; i++) //定义棋盘
for( int j = 1; j <= n; j++)
cin >> map_Q[i][j];
ans = 0;
dfs_black(1); //先把黑皇后放在第一列
cout << ans << endl;
return 0;
}
感谢这位老哥的讲解,代码和这位老哥的差不多,添加了一些注释,更方便理解,附上他的链接: link.