资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
A同学的学习成绩十分不稳定,于是老师对他说:“只要你连续4天成绩有进步,那我就奖励给你一朵小红花。”可是这对于A同学太困难了。于是,老师对他放宽了要求:“只要你有4天成绩是递增的,我就奖励你一朵小红花。”即只要对于第i、j、k、l四天,满足i<j<k<l并且对于成绩wi<wj<wk<wl,那么就可以得到一朵小红花的奖励。现让你求出,A同学可以得到多少朵小红花。
输入格式
第一行一个整数n,表示总共有n天。第二行n个数,表示每天的成绩wi。
输出格式
一个数,表示总共可以得到多少朵小红花。
样例输入
6
1 3 2 3 4 5
样例输出
6
数据规模和约定
对于40%的数据,n<=50;
对于100%的数据,n<=2000,0<=wi<=109。
解题思路:
这道题目困扰了我好久,但是我始终想不出如何构建dp,一位博主的讲解非常好,这里我列给大家:
们将 dp[i][j] 定义为以a[i]为起点,一直到数组结束为止,所有递增序列长度为j的序列的个数。
以数组 1 3 2 3 4 5为例:
dp[3][2]表示从第二个3为起始,一直到5,递增序列长度为2的个数。容易知道,满足这样的序列有2个,34 和 35。所以dp[3][2]=2;
有了上述的定义,我们就可以得出以下递推公式
dp[i][j]= ∑dp[k][j-1] (k>i,a[k]>a[i])
现在,我们只要确定了边界条件,就可以使用动态规划来解决这个问题了。
容易知道 dp[n-1][1]是边界条件,值为1。
为了让各位读者对动态规划的过程有更形象的了解,我就以1 3 2 3 4 5 为例,列出开头的几个步骤:
初始: dp[5][1]=1,其余dp[i][j]=0;
第二步 : dp[4][1]=1; dp[4][2]=dp[5][1]=1;
第三步: dp[3][1]=1; dp[3][2]=dp[4][1]+dp[5][1]=2; dp[3][3]=dp[4][2]=1;
第四步:dp[2][1]=1; dp[2][2]=dp[5][1]+dp[4][1]+dp[3][1]=3; dp[2][3]=dp[3][2]+dp[4][2]=3; dp[2][4]=dp[3][3]=1;
第五步: dp[1][1]=0; dp[1][2]=dp[4][1]+dp[5][1]=2 (a[k]要大于a[i])
dp[1][3]=dp[4][2]=1;
第六步: dp[0][1]=1; dp[0][2]=dp[1][1]+dp[2][1]+dp[3][1]+dp[4][1]+dp[5][1]=5; … dp[0][4]=dp[1][3]+dp[2][3]+dp[3][3] =1+3+1=5;
dp[i][4]中保存的就是,从i开始,一直到结束,递增序列长度为4的序列的个数。
因此,只要计算所有的dp[i][4]的和即可。
代码如下:
#include<bits/stdc++.h>
using namespace std;
long long dp[2001][2001];
int a[2001];
int main(){
int n;
cin >> n;
for(int i = 0; i < n; i ++){
cin >> a[i];
}
memset(dp, 0, sizeof(dp));
long long ans = 0;
for(int i = n - 1; i >= 0; i --){
dp[i][1] = 1;
for(int j = i + 1; j < n; j ++){
if(a[j] > a[i]){
int k = 2;
while(1){
if(dp[j][k - 1] == 0) {
break;
}
dp[i][k] = dp[i][k] + dp[j][k - 1];
k ++;
}
}
}
}
for(int i = 0; i < n; i ++){
ans += dp[i][4];
}
cout << ans << endl;
return 0;
}
这里有一个bug我始终无法理解,就是代码应该一模一样,不知道为什么下面这个有一个示例显示超时:
#include<bits/stdc++.h>
using namespace std;
long long dp[2001][2001];
int a[2001];
int main(){
int n;
cin >> n;
for(int i = 0; i < n; i ++){
cin >> a[i];
}
memset(dp, 0, sizeof(dp));
long long ans = 0;
for(int i = n - 1; i >= 0; i --){
dp[i][1] = 1;
for(int j = i + 1; j < n; j ++){
if(a[j] > a[i]){
int k = 2;
while(1){
if(dp[i][k - 1] == 0){
break;
}
dp[i][k] = dp[i][k] + dp[j][k - 1];
k ++;
}
}
}
}
for(int i = 0; i < n; i ++){
ans += dp[i][4];
}
cout << ans << endl;
return 0;
}
明白的朋友烦请告知一声,感谢!
参考地址:https://blog.csdn.net/weixin_42185553/article/details/105879284