Python科学计算应用基础之Numpy

本文介绍了Python科学计算库Numpy的基础知识,包括Numpy的Array属性,如zeros、ones、full函数,arange和linspace,以及随机数组和矩阵的生成。此外,还讨论了Array的基本操作,如索引、切片、reshape、合并和分割,以及数组与矩阵的运算。Numpy在时间和空间效率上的优势使其成为数据分析和机器学习的重要工具。
摘要由CSDN通过智能技术生成


前言

  • Python四种基本数据结构类型

List,Tuple,Set,Dict

  • Numpy的数据结构类型

Ndarry(多维数组)

在介绍Numpy之前,先说一下Jupyter Notebook,这是一款数据分析玩家必用的工具,其风格跟我们以往用过的软件开发IDE有很大的不同。

这里简单说一下,Data Science IDE和Code Develop IDE的有什么不同:
在这里插入图片描述

  • 安装jupyter

pip install jupyter

工作目录下输入,jupyter notebook,就会启动浏览器,进入进入工作界面:
在这里插入图片描述

在此介绍一种我常用的进入工作目录的方式:

  1. 鼠标点击进入工作目录
  2. 在文件路径处输入cmd然后回车

效果如下:在这里插入图片描述

  • 安装numpy

pip install numpy


一、Numpy是什么?

  • 时间转换

0.000 001 毫秒 = 1纳秒
0.001 毫秒 = 1微秒
1000 毫秒 = 1秒

示例:

  • array类型

加粗样式

  • 生成10个1.0的浮点数列表

在这里插入图片描述

# L = [1.0 for i in range(10)] 

# 等价代码如下
L1 = []
for i in range(10):
	L1.append(1.0)

在这里插入图片描述

  1. numpy array 和Python List 区别是什么?

List 和array的计算效率上的差异:

在这里插入图片描述

(np.sum是numpy array的求和函数)

  • 结论:

array类型:使用numpy求和函数时间最快:
最快是numpy中的array
其次是python中的List
最后是中间两行数据
在Python中所有的变量都是类和对象
在Numpy中所有的变量都是C语言中的基本数据类型

在这里插入图片描述

为什么选择Numpy?
1.时间上优化:
    底层的计算库都是C语言
    它的基本类型都是C语言类型
    Python:int[整形只有int]
    Numpy:int8,int16,int32,int64
2.节省空间:
    Python:需要添加额外的类型信息
    Numpy:只需要保存数据信息

在这里插入图片描述

  • 使用astype进行数据转换
    在这里插入图片描述
  1. 32和64存储有何不同吗?(查看参数nbytes)
    在这里插入图片描述

分析:
L:8个数,每个四个字节 4×8 = 32
L64:8个数,每个八个字节 8×8 = 64

  • 若是只修改array的dtyte可不可以?
    在这里插入图片描述
    在这里插入图片描述

  • 结论:

  • L64最开始占用64个字节,int64是8个数

  • dtype直接改为int32,还是64个字节---->16个数

  • dtype直接改为int16,还是64个字节---->32个数

  • 同一个数据块,以不同的数据类型进行解析:

二、Array属性讲解

2.1 array属性含义

代码如下(示例):

import numpy as np
x = np.array([[1,2,3],[3,4,5]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胜天半月子

打不打商的无所谓,能帮到你就好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值