《数值分析》-- 高斯求积公式

本文深入探讨了高斯型求积公式,包括高斯-勒让德和高斯-切比雪夫公式,阐述了它们的理论基础和特性。在节点个数固定的情况下,讨论了能否通过选择节点位置提高求积公式的精度。同时,介绍了利用正交多项式构造求积公式的方法,并给出了不同节点数量下的示例和求积公式,如两个点的高斯-勒让德公式。文章还回顾了复合梯形公式和Simpson公式等经典积分方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


概述

  • 问题
    那么,在节点个数一定的情况下,是否可以在[a,b]上自由选择节点的位置,使求积公式的精度提得更高?
    在这里插入图片描述
  • 例题
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

一、高斯型求积公式的一般理论

  • 一般理论
    在这里插入图片描述

1.1 高斯型求积公式和高斯点

在这里插入图片描述
习题

1.2 高斯点的特征

在这里插入图片描述

  • 利用正交多项式构造高斯求积公式
    在这里插入图片描述
    习题

二、常用的高斯求积公式⭐

2.1 高斯-勒让德求积公式( Gauss-Legendre )

  1. Legendre 多项式族:
    在这里插入图片描述
    低阶Legendre多项式
    在这里插入图片描述
  2. 高斯-勒让德求积公式(G-L求积公式)⭐
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  1. 一般有界区间[a, b]上的高斯-勒让德求积公式
    (G-L求积公式)
    目的转换区间到 [-1,1] :
    在这里插入图片描述
    习题

2.2 高斯-切比雪夫求积公式( Gauss-Chebyshe)

切比雪夫多项式
在这里插入图片描述
在这里插入图片描述

  • 截断误差
    在这里插入图片描述

总结

  • 例题
  1. 在这里插入图片描述
    待定系数法构造高斯求积公式:
    在这里插入图片描述
  • 问题
    为什么2点Gauss公式有应该有三次代数精度

一般n+1个节点的求积公式的代数精度最高为2n+1次

在这里插入图片描述
在这里插入图片描述

  1. 在这里插入图片描述
    在这里插入图片描述
  • 详细过程
    在这里插入图片描述
  1. 在这里插入图片描述
    在这里插入图片描述
  • 详细过程
    在这里插入图片描述
    在这里插入图片描述
  • 例题
  1. 在这里插入图片描述
    利用正交多项式构造高斯求积公式:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 例题
  1. 在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 公式回忆
  1. 复合梯形公式
    在这里插入图片描述
    三个点: T 2 T2 T2
    五个点: T 4 T4 T4
  2. Simpson公式
    在这里插入图片描述
  3. 三个点的高斯-勒让德求积公式
    在这里插入图片描述
  • 例题
  1. 在这里插入图片描述
    在这里插入图片描述
  • 公式
    在这里插入图片描述
  1. 在这里插入图片描述
    在这里插入图片描述
  • 两点高斯-勒让德求积公式
    在这里插入图片描述

  • 例题
  1. 在这里插入图片描述
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胜天半月子

打不打商的无所谓,能帮到你就好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值