具体函数求所有二阶偏导数:
这个就很烦,一个比较靠谱的方法就是硬算,先求
f
x
,
f
y
f_x,f_y
fx,fy,再求
f
x
x
,
f
x
y
,
f
y
y
f_{xx},f_{xy},f_{yy}
fxx,fxy,fyy
注意了,
f
x
y
=
f
y
x
f_{xy}=f_{yx}
fxy=fyx的条件是累次极限相等,即在该点连续。
由于正常情况下没有指出是哪一个点,默认都是连续的,所以两个相等,求的时候只要求3个就行
抽象函数求二阶导数,比如
f
(
x
y
,
x
−
y
)
f(xy,x-y)
f(xy,x−y)
先求对x的一阶偏导,比如
f
x
=
y
f
1
+
f
2
f_x=yf_1+f_2
fx=yf1+f2
其中
f
1
f_1
f1和
f
2
f_2
f2分别是
f
f
f对于
x
y
xy
xy和
x
−
y
x-y
x−y的导数,要是令
u
=
x
y
,
v
=
x
−
y
u=xy,v=x-y
u=xy,v=x−y
那么写成
f
u
,
f
v
f_u,f_v
fu,fv也是可以的。
然后求二阶的时候注意,
f
1
,
f
2
f_1,f_2
f1,f2都是看成关于
u
=
x
y
,
v
=
x
−
y
u=xy,v=x-y
u=xy,v=x−y的函数
所以
f
x
x
=
y
(
y
f
11
+
f
12
)
+
(
y
f
21
+
f
22
)
f_{xx}=y(yf_{11}+f_{12})+(yf_{21}+f_{22})
fxx=y(yf11+f12)+(yf21+f22)
最后合并同类项。
注意中间的一阶导数一定看成是中间变量
u
,
v
u,v
u,v而非直接是
x
,
y
x,y
x,y的函数
中值定理:我好像没见过要用,暂时不总结
泰勒公式:
这个贼烦,主要就是记公式,记住了就完事,
书上的写法正常人看了都要傻半天,所以我就改写了一下,f(x,y)在
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)的展开式是
f
(
x
,
y
)
=
f
(
x
0
,
y
0
)
+
f
x
(
x
0
,
y
0
)
(
x
−
x
0
)
+
f
y
(
x
0
,
y
0
)
(
y
−
y
0
)
+
1
2
(
f
x
x
(
x
0
,
y
0
)
(
x
−
x
0
)
2
+
2
f
x
y
(
x
0
,
y
0
)
(
x
−
x
0
)
(
y
−
y
0
)
+
f
y
y
(
x
0
,
y
0
)
(
y
−
y
0
)
2
)
+
.
.
.
f(x,y)=f(x_0,y_0)+f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)+\frac{1}{2}(f_{xx}(x_0,y_0)(x-x_0)^2+2f_{xy}(x_0,y_0)(x-x_0)(y-y_0)+f_{yy}(x_0,y_0)(y-y_0)^2)+...
f(x,y)=f(x0,y0)+fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0)+21(fxx(x0,y0)(x−x0)2+2fxy(x0,y0)(x−x0)(y−y0)+fyy(x0,y0)(y−y0)2)+...
这里就到二阶,正常情况下不会算到三阶的,因为三阶有4个偏导,算起来要命。
极值:
说简单简单,说难难。
首先,算出一阶的偏导,令其等于0,这样得到了方程组然后解出稳定点。
其次,算出所有二阶偏导,
f
x
x
>
0
,
f
x
x
f
y
y
−
f
x
y
2
>
0
f_{xx}>0,f_{xx}f_{yy}-f_{xy}^2>0
fxx>0,fxxfyy−fxy2>0取极小值,
f
x
x
<
0
,
f
x
x
f
y
y
−
f
x
y
2
>
0
f_{xx}<0,f_{xx}f_{yy}-f_{xy}^2>0
fxx<0,fxxfyy−fxy2>0取极大值,
不定则不取极值。