泰勒公式与极值问题的知识点总结

具体函数求所有二阶偏导数:
这个就很烦,一个比较靠谱的方法就是硬算,先求 f x , f y f_x,f_y fx,fy,再求 f x x , f x y , f y y f_{xx},f_{xy},f_{yy} fxx,fxy,fyy
注意了, f x y = f y x f_{xy}=f_{yx} fxy=fyx的条件是累次极限相等,即在该点连续。
由于正常情况下没有指出是哪一个点,默认都是连续的,所以两个相等,求的时候只要求3个就行

抽象函数求二阶导数,比如 f ( x y , x − y ) f(xy,x-y) f(xy,xy)
先求对x的一阶偏导,比如 f x = y f 1 + f 2 f_x=yf_1+f_2 fx=yf1+f2
其中 f 1 f_1 f1 f 2 f_2 f2分别是 f f f对于 x y xy xy x − y x-y xy的导数,要是令 u = x y , v = x − y u=xy,v=x-y u=xy,v=xy
那么写成 f u , f v f_u,f_v fu,fv也是可以的。
然后求二阶的时候注意, f 1 , f 2 f_1,f_2 f1f2都是看成关于 u = x y , v = x − y u=xy,v=x-y u=xy,v=xy的函数
所以 f x x = y ( y f 11 + f 12 ) + ( y f 21 + f 22 ) f_{xx}=y(yf_{11}+f_{12})+(yf_{21}+f_{22}) fxx=y(yf11+f12)+(yf21+f22)
最后合并同类项。
注意中间的一阶导数一定看成是中间变量 u , v u,v u,v而非直接是 x , y x,y x,y的函数

中值定理:我好像没见过要用,暂时不总结

泰勒公式:
这个贼烦,主要就是记公式,记住了就完事,
书上的写法正常人看了都要傻半天,所以我就改写了一下,f(x,y)在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的展开式是
f ( x , y ) = f ( x 0 , y 0 ) + f x ( x 0 , y 0 ) ( x − x 0 ) + f y ( x 0 , y 0 ) ( y − y 0 ) + 1 2 ( f x x ( x 0 , y 0 ) ( x − x 0 ) 2 + 2 f x y ( x 0 , y 0 ) ( x − x 0 ) ( y − y 0 ) + f y y ( x 0 , y 0 ) ( y − y 0 ) 2 ) + . . . f(x,y)=f(x_0,y_0)+f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)+\frac{1}{2}(f_{xx}(x_0,y_0)(x-x_0)^2+2f_{xy}(x_0,y_0)(x-x_0)(y-y_0)+f_{yy}(x_0,y_0)(y-y_0)^2)+... f(x,y)=f(x0,y0)+fx(x0,y0)(xx0)+fy(x0,y0)(yy0)+21(fxx(x0,y0)(xx0)2+2fxy(x0,y0)(xx0)(yy0)+fyy(x0,y0)(yy0)2)+...
这里就到二阶,正常情况下不会算到三阶的,因为三阶有4个偏导,算起来要命。

极值:
说简单简单,说难难。
首先,算出一阶的偏导,令其等于0,这样得到了方程组然后解出稳定点。
其次,算出所有二阶偏导,
f x x > 0 , f x x f y y − f x y 2 > 0 f_{xx}>0,f_{xx}f_{yy}-f_{xy}^2>0 fxx>0,fxxfyyfxy2>0取极小值,
f x x < 0 , f x x f y y − f x y 2 > 0 f_{xx}<0,f_{xx}f_{yy}-f_{xy}^2>0 fxx<0,fxxfyyfxy2>0取极大值,
不定则不取极值。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值