普物期中题型总结题解

题目:https://blog.csdn.net/HGGshiwo/article/details/110672493

1.计算电场:

可以由点电荷公式叠加,可以由高斯定理求得,可以由电势对距离求导

电偶极矩对任意点的电场并不容易计算。

但是对于中线上的电场为: p 4 π ϵ 0 x 3 \frac{p}{4\pi\epsilon_0x^3} 4πϵ0x3p

对于垂直中线方向电场为: 2 p 4 π ϵ 0 y 3 \frac{2p}{4\pi\epsilon_0y^3} 4πϵ0y32p

(注意y是中点到y的距离,另外必须先通分再小量化)

对于任意点r, θ \theta θ,分解为平行r方向与垂直r方向,分别放置一对电偶极矩,计算即可。

电势求导格外简单,因为电势的叠加不需要注意方向。

通分后有r1-r2和r1r2

r1r2=r^2,r1-r2=rcos θ \theta θ

之后对r求导,对x求导即可,x是r的法线方向,dx=rd θ \theta θ

2.如果是无穷长的导线,高斯定理易得 λ 2 π ϵ 0 r \frac{\lambda}{2\pi \epsilon_0 r} 2πϵ0rλ

如果是有限长度的导线,需要微元法积分。

注意:

主元应该选取P点连线与中垂线的夹角,

另外弧度的微元必须除一个三角函数转化为导线的长度。

不要忘记投影。

答案为 λ 4 π ϵ 0 r ( sin ⁡ θ 1 − sin ⁡ θ 2 ) \frac{\lambda}{4\pi \epsilon_0 r}(\sin\theta_1-\sin\theta_2) 4πϵ0rλ(sinθ1sinθ2)

3.若用电势求导很容易得到。

(一个小技巧是由于圆环上的电荷都是对称的,其实看成一个电荷,大小为 2 π λ 2\pi\lambda 2πλ

4.若用电势求导很容易得到。(看成多个环)

电势为 σ 2 ϵ 0 ( r 2 + z 2 − z ) \frac{\sigma}{2\epsilon_0}(\sqrt{r^2+z^2}-z) 2ϵ0σ(r2+z2 z)

电场为 σ z 2 ϵ ( 1 r 2 + z 2 − 1 z ) \frac{\sigma z}{2\epsilon}(\frac1{\sqrt{r^2+z^2}}-\frac{1}{z}) 2ϵσz(r2+z2 1z1)

5.由于到圆心的距离相等,因此电势易得。

电场可以通过微元法求,

d q = R sin ⁡ θ d ϕ R d θ σ dq=R\sin\theta d\phi Rd\theta\sigma dq=RsinθdϕRdθσ

答案为 σ 4 ϵ 0 \frac{\sigma}{4\epsilon_0} 4ϵ0σ

6.将环在z处的电场看作一个小量,不要忘记乘电荷q,然后小量化,保留到常数。

7.电偶极矩所受的力矩为 τ = p × E \tau=p\times E τ=p×E

所作的功为 W = ∫ τ ⋅ d θ = p E cos ⁡ θ = P ⋅ E W=\int \tau\cdot d\theta=pE\cos\theta=P\cdot E W=τdθ=pEcosθ=PE,即势能

8.r<R时,用高斯定理可得: E = r ρ 3 ϵ 0 E=\frac{r\rho}{3\epsilon_0} E=3ϵ0rρ

r>R时,用高斯定理可得: E = R 3 ρ 3 ϵ 0 r 2 E=\frac{R^3\rho}{3\epsilon_0r^2} E=3ϵ0r2R3ρ

9.注意三点,电荷守恒,导体内部场强为0,电荷只分布在导体表面。

取导体内部为高斯面,

可得 0 = λ l + σ i n 2 π r l , σ i n = − λ 2 π r 0=\lambda l+\sigma_{in}2\pi rl,\sigma_{in}=\frac{-\lambda}{2\pi r} 0=λl+σin2πrl,σin=2πrλ

由电荷守恒,l长度的导体中电荷应该是相同的,因此 σ o u t = λ 2 π R \sigma_{out}=\frac{\lambda}{2\pi R} σout=2πRλ

x<r时,高斯定理, E = λ 2 π x E=\frac{\lambda}{2\pi x} E=2πxλ

r<x<R,E=0

x>R,高斯定理,注意感应电荷之和=0, E = λ 2 π x E=\frac{\lambda}{2\pi x} E=2πxλ

10. E = σ 2 ϵ 0 E=\frac{\sigma}{2\epsilon_0} E=2ϵ0σ

11.可以看作平行板电场的矢量叠加,

外侧是+E-E=0,

内测是 E + E = 2 E = σ ϵ 0 E+E=2E=\frac{\sigma}{\epsilon_0} E+E=2E=ϵ0σ

12.A的电场分布是确定的,

取包含A,B的高斯面,可得 σ B = − σ A / 2 \sigma_B=-\sigma_A/2 σB=σA/2

电荷守恒, σ C = σ A / 2 \sigma_C=\sigma_A/2 σC=σA/2

这是因为左边还是有电场的,别给忘了。这个2一定要小心。

电场由在场所有的平板电场的矢量和确定。

E A = σ A / ϵ E_A=\sigma_A/\epsilon EA=σA/ϵ

E A B = − E A , E B C = 0 , E C = − E A E_{AB}=-E_A,E_{BC}=0,E_C=-E_A EAB=EA,EBC=0,EC=EA

13.取导体球面为高斯面,

r=R1, σ = Q 1 4 π R 1 2 \sigma=\frac{Q_1}{4\pi R_1^2} σ=4πR12Q1

R=R2, σ = − Q 1 4 π R 2 2 \sigma=\frac{-Q_1}{4\pi R_2^2} σ=4πR22Q1

R=R3, σ = Q 2 − Q 1 4 π R 3 2 \sigma=\frac{Q_2-Q_1}{4\pi R_3^2} σ=4πR32Q2Q1

14.只能计算沿x和y方向的,方法和电偶极矩类似。

V = 2 q d 2 4 π ϵ 0 r 3 V=\frac{2qd^2}{4\pi\epsilon_0r^3} V=4πϵ0r32qd2

15.计算势能(能量)的公式:

对于离散的分布: U = 1 2 ∑ q i V i U=\frac1{2}\sum q_iV_i U=21qiVi

对于连续的分布: U = 1 2 ∫ V d q U=\frac{1}{2}\int Vdq U=21Vdq

也可以用电容器公式: U = Q 2 2 C = C V 2 2 U=\frac{Q^2}{2C}=\frac{CV^2}{2} U=2CQ2=2CV2

答案: q 2 8 π ϵ 0 \frac{q^2}{8\pi\epsilon_0} 8πϵ0q2

16.电势分布的计算:

对于未知模型的电势分布,用 V = − ∫ E d l V=-\int Edl V=Edl计算,

对于已知模型的电势分布,可以直接套公式。

比如球体外的电势分布等效为球心的电势

球壳内的电势与球壳电势相等。

当然,要求电势或者电场都需要知道电荷的分布。

易得分布分别为 Q 1 4 π a 2 , − Q 1 4 π b 2 , Q 1 4 π c 2 \frac{Q1}{4\pi a^2},\frac{-Q1}{4\pi b^2},\frac{Q1}{4\pi c^2} 4πa2Q1,4πb2Q1,4πc2Q1

2个球壳和一个球的电势叠加即可:

a<r<b: V = Q 4 π ϵ 0 ( 1 r − 1 b + 1 c ) V=\frac{Q}{4\pi\epsilon_0}(\frac{1}{r}-\frac{1}{b}+\frac{1}{c}) V=4πϵ0Q(r1b1+c1)

b<r<c: V = Q 4 π ϵ 0 c V=\frac{Q}{4\pi\epsilon_0c} V=4πϵ0cQ

r>c: V = Q 4 π ϵ 0 r V=\frac{Q}{4\pi\epsilon_0r} V=4πϵ0rQ

r<a:必须对球体的E积分,即从无穷远处到a,再从a到r,计算出以后,然后再叠加即可。

V = Q 4 π ϵ 0 ( 1 2 a − r 2 2 a 3 + 1 a − 1 b + 1 c ) V=\frac{Q}{4\pi\epsilon_0}(\frac{1}{2a}-\frac{r^2}{2a^3}+\frac{1}{a}-\frac{1}{b}+\frac{1}{c}) V=4πϵ0Q(2a12a3r2+a1b1+c1)

17:假设带上Q,

E = σ ϵ 0 = Q ϵ 0 A E=\frac{\sigma}{\epsilon_0}=\frac{Q}{\epsilon_0A} E=ϵ0σ=ϵ0AQ

V = − ∫ E d x = Q d ϵ 0 A V=-\int Edx=\frac{Qd}{\epsilon_0A} V=Edx=ϵ0AQd

C = Q / V = ϵ 0 A d C=Q/V=\frac{\epsilon_0A}{d} C=Q/V=dϵ0A

18.假设带上Q,

E = Q 2 π r l ϵ 0 E=\frac{Q}{2\pi rl\epsilon_0} E=2πrlϵ0Q

V = Q 2 π ϵ 0 l ln ⁡ ( b a ) V=\frac{Q}{2\pi \epsilon_0l}\ln(\frac{b}{a}) V=2πϵ0lQln(ab)

C = 2 π ϵ 0 l ln ⁡ ( b a ) C=\frac{2\pi\epsilon_0l}{\ln(\frac{b}{a})} C=ln(ab)2πϵ0l

19. C = 4 π ϵ 0 ( 1 a − 1 b ) C=4\pi\epsilon_0(\frac{1}{a}-\frac{1}{b}) C=4πϵ0(a1b1)

a是内部的球半径,b是外部的球壳内径。

b → + ∞ , C = 4 π ϵ 0 a b\to+\infty,C=4\pi\epsilon_0a b+,C=4πϵ0a

20.自相似法: C 0 C_0 C0上方和下方并联一个C

则有这个组合的电容为C: 1 C 0 + 1 2 C = 1 C \frac{1}{C_0}+\frac{1}{2C}=\frac{1}{C} C01+2C1=C1

得: C = C 0 2 C=\frac{C_0}{2} C=2C0

21.注意不是两个电容器串联,因为中间是空气。

可以计算最内层到最外层的电势,再用公式算。

注意到2,3层之间没有电场,可以由高斯定理推出。

这提醒我们计算电场时,不能单看两块极板之间的电荷分布,应该注意到在场所有电场的叠加。

从a到b,从c到d的电势应该为 V = λ 2 π ϵ 0 ( ln ⁡ ( b a ) + ln ⁡ ( d c ) ) V=\frac{\lambda}{2\pi\epsilon_0}(\ln(\frac{b}{a})+\ln(\frac{d}{c})) V=2πϵ0λ(ln(ab)+ln(cd))

可以计算出电容。

22.能量密度的公式为: u = 1 2 ϵ 0 E 2 u=\frac{1}{2}\epsilon_0E^2 u=21ϵ0E2

注意到有电场的地方都需要积分到。

计算可得: u = σ 2 8 ϵ 0 u=\frac{\sigma^2}{8\epsilon_0} u=8ϵ0σ2

23.根据公式易得

24.高斯定理只适用于真空中的情况。

遇到带有电介质的,有两种做法:不涉及极板上自由移动电荷的,直接等效为一个电容,电容的大小是原来的 κ e \kappa_e κe倍。

如果涉及到具体的电荷分布的:

若已知极板间的电场为E,

D = ϵ 0 κ e E D=\epsilon_0\kappa_eE D=ϵ0κeE,代表了极板上的电荷,也是可以自由移动的电荷,叫做极化位移矢量。

P = x e ϵ 0 E P=x_e\epsilon_0E P=xeϵ0E,代表了电解质上的电荷分布。

极板上的于电解质上的电荷分布叠加之和为总的电荷分布 E ϵ 0 E\epsilon_0 Eϵ0

插入绝缘体后,V不变,电容由C变为 κ e C \kappa_eC κeC

由此可以得到 V = V 0 κ e V=\frac{V_0}{\kappa_e} V=κeV0

电场变为原来的 κ e \kappa_e κe倍。

25.本身电荷分布为 σ 0 \sigma_0 σ0,C变为原来的ke倍,则电势V变为1/ke倍,电场变为1/ke倍。

26.如果一个绝缘体放在了电场中,想计算感应出电荷分布: σ = P cos ⁡ θ \sigma=P\cos\theta σ=Pcosθ

P被称为位移极化矢量, P = ∑ p Δ V P=\frac{\sum p}{\Delta V} P=ΔVp,即单位体积中电偶极子的矢量和。

θ \theta θ是电场与平面法向量的夹角。

具体计算时用微元法,将新的电荷分布代替均匀电荷分布代入式子中计算。

d q = R sin ⁡ θ d ϕ R cos ⁡ θ d θ σ = R 2 sin ⁡ θ d ϕ d θ cos ⁡ 2 θ P dq=R\sin\theta d\phi R\cos\theta d\theta\sigma=R^2\sin\theta d\phi d\theta\cos^2\theta P dq=RsinθdϕRcosθdθσ=R2sinθdϕdθcos2θP

之后积分即可,答案为 − P 3 ϵ 0 \frac{-P}{3\epsilon_0} 3ϵ0P

27. D = P + E ϵ 0 = κ ϵ 0 E D=P+E\epsilon_0=\kappa\epsilon_0E D=P+Eϵ0=κϵ0E

28.如果是无穷长的导线,可以使用安培环路定理.

易得 B = μ 0 i 2 π r B=\frac{\mu_0i}{2\pi r} B=2πrμ0i

如果是有限长的导线,必须积分算。

注意主元是该点到导线连线的垂线与该点到导线上一点的夹角。

虽然不用乘角度,但是要注意乘 sin ⁡ θ \sin\theta sinθ

结果为 B = μ 0 i 4 π r ( cos ⁡ θ 1 − cos ⁡ θ 0 ) B=\frac{\mu_0i}{4\pi r}(\cos\theta_1-\cos\theta_0) B=4πrμ0i(cosθ1cosθ0)

29.必须积分,注意到方向一定和连线垂直。

和电场一样,每一个ids对于磁场的贡献是相同的,分量是相同的,可以直接看成 2 π r i 2\pi ri 2πri

答案是 B = μ 0 i R 2 2 ( R 2 + z 2 ) 3 2 B=\frac{\mu_0iR^2}{2(R^2+z^2)^{\frac{3}{2}}} B=2(R2+z2)23μ0iR2

当z=0时,磁场为 B = μ 0 i 2 r B=\frac{\mu_0i}{2r} B=2rμ0i

30.看成无限长导线组成的平面,主元要选取点到任一点连线的角度 θ \theta θ

d i = z d θ i cos ⁡ 2 θ w di=\frac{zd\theta i}{\cos^2\theta w} di=cos2θwzdθi

结果为 B = ∫ μ 0 d i 2 π ( z / cos ⁡ ( θ ) ) = μ 0 i 2 π w ( θ 1 − θ 2 ) B=\int\frac{\mu_0di}{2\pi(z/\cos(\theta))}=\frac{\mu_0i}{2\pi w}(\theta_1-\theta_2) B=2π(z/cos(θ))μ0di=2πwμ0i(θ1θ2)

31.磁矩的计算公式: u = i A u=iA u=iA

i是电流环的电流大小,A是被电流环住的面积,不是电流流过的面积。

u = e T π R 2 = e 2 m L u=\frac{e}{T}\pi R^2=\frac{e}{2m}L u=TeπR2=2meL

L是电子的角动量, L = m ( v × r ) L=m(v\times r) L=m(v×r)

32.如果是无限长的螺线管,用环路定理易得: B L = μ 0 n L i BL=\mu_0nLi BL=μ0nLi

n是单位长度的电流值,答案为 B = μ 0 n i B=\mu_0ni B=μ0ni

如果是有限长度的,只能积分。

注意主元选取中轴上一点到螺线管上任意一点与垂直的夹角。

看成电流环。

d B = μ 0 d i R cos ⁡ θ 2 ( R / cos ⁡ θ ) 2 dB=\frac{\mu_0diR\cos\theta}{2(R/\cos\theta)^{2}} dB=2(R/cosθ)2μ0diRcosθ

d i = R cos ⁡ 2 θ d θ n i di=\frac{R}{\cos^2\theta}d\theta ni di=cos2θRdθni

答案为: B = μ 0 n i 2 ( sin ⁡ θ 1 − sin ⁡ θ 2 ) B=\frac{\mu_0ni}{2}(\sin\theta_1-\sin\theta_2) B=2μ0ni(sinθ1sinθ2)

33.用单层螺线管的磁场分布: B = 1 2 μ 0 n i ( sin ⁡ ( θ 1 ) − sin ⁡ ( θ 2 ) ) B=\frac{1}{2}\mu_0ni(\sin(\theta_1)-\sin(\theta_2)) B=21μ0ni(sin(θ1)sin(θ2))

总的圈数为N,N/2l是单位长度的圈数,

一层电流环的电流: N i ( R 1 − R 2 ) 2 l \frac{Ni}{(R_1-R_2)2l} (R1R2)2lNi

单位长度的电流大小: n i = N i ( R 1 − R 2 ) 2 l d r = j d r ni=\frac{Ni}{(R_1-R_2)2l}dr=jdr ni=(R1R2)2lNidr=jdr

θ \theta θ与r有关,最后是两倍。再积分。

34.用环路定理易得。 B = 1 2 μ 0 n i B=\frac{1}{2}\mu_0ni B=21μ0ni

n是单位长度的电流大小。

35.取中轴线一圈积分易得。 B = N μ 0 i 2 π r B=\frac{N\mu_0i}{2\pi r} B=2πrNμ0i

N是总的匝数,i是每匝电流大小。

36.注意力的大小随着位置发生改变。

F = i d s × B F=ids\times B F=ids×B

与R^2和 μ 0 4 π \frac{\mu_0}{4\pi} 4πμ0无关

37.利用无限长导线的磁场分布,再套用毕奥萨法尔定理易得

38.可以证明,磁矩为 u = i A u=iA u=iA的磁偶极矩在B中受到的磁场力矩为 τ = u × B \tau=u\times B τ=u×B

势能为 U = ∫ τ d θ = u ⋅ B U=\int\tau d\theta=u\cdot B U=τdθ=uB

39.核磁共振的原理:将原子放入磁场中。此时由于电子的运动产生的电流使得原子具有磁矩。

初始时刻原子磁矩的方向导致势能不同,若将势能完全释放,则会发出光子。

势能最大值为: U = 2 i A B U=2iAB U=2iAB(本来A方向与B相反,现在相同)

势能转化为光子的能量: U = h f U=hf U=hf

f = 2 e B L m h f=\frac{2eBL}{mh} f=mh2eBL

L是电子的角动量。

40.高中知识:半径: R = m v B q R=\frac{mv}{Bq} R=Bqmv

周期: T = 2 π m B q T=\frac{2\pi m}{Bq} T=Bq2πm

41.垂直磁场的速度v1导致圆周运动周期: T = 2 π m B q T=\frac{2\pi m}{Bq} T=Bq2πm

平行磁场的速度v2导致匀速直线运动,螺距为一个周期前进的距离: h = 2 π m v 2 B q h=\frac{2\pi mv_2}{Bq} h=Bq2πmv2

42.回旋加速器加速的结果是:达到最大半径后出来,因此根据R计算速度即可。

43.霍尔电压:利用电场力等于磁场力可得: q v B = E q qvB=Eq qvB=Eq

利用 j = n e v j=nev j=nev

V = E h = v B h = j B h n q = i B n q d V=Eh=vBh=\frac{jBh}{nq}=\frac{iB}{nqd} V=Eh=vBh=nqjBh=nqdiB

霍尔电阻: R H = V i = B n q d R_H=\frac{V}{i}=\frac{B}{nqd} RH=iV=nqdB

不是很清楚霍尔电阻的物理含义。

44.根据动生电动势的公式: ϵ = ∫ ( v × B ) d l \epsilon=\int (v\times B)dl ϵ=(v×B)dl可得: B w 2 ( R 2 2 − R 1 2 ) \frac{Bw}{2}(R_2^2-R_1^2) 2Bw(R22R12)

45.需要同时考虑电子在导体棒中的速度和拖动的速度。

可以发现洛伦兹力是把拖动的速度转化为了沿导体棒的速度。

46.根据互感公式的定义:

M 12 = N 2 Φ 12 i 1 M_{12}=\frac{N_2\Phi_{12}}{i_1} M12=i1N2Φ12

Φ 12 \Phi_{12} Φ12是1产生的电场在2处的磁通量

可以看作磁通量完全由铁棒传递,因此假设1上有电流i,

根据通电螺线管的磁场公式: B 1 = μ 0 N 1 l i B_1=\mu_0\frac{N_1}{l}i B1=μ0lN1i

得到 M = μ 0 N 1 N 2 A l M=\frac{\mu_0N_1N_2A}{l} M=lμ0N1N2A

47.根据自感系数的公式: L = N Φ i L=\frac{N\Phi}{i} L=iNΦ

其中 Φ \Phi Φ是B所在位置总的磁通量

L = μ 0 n 2 V L=\mu_0n^2V L=μ0n2V

V是通电螺线管体积,n是单位长度匝数。

48.注意假设的是每匝的电流数为i,

另外在计算时不要忘记磁通量也要乘N

通过环路定理可以得到: B = N μ 0 i 2 π r B=\frac{N\mu_0i}{2\pi r} B=2πrNμ0i

N是总匝数。

Φ = ∫ B d A = h ∫ B d r \Phi=\int BdA=h\int Bdr Φ=BdA=hBdr

答案为 L = N 2 μ 0 h 2 π ln ⁡ ( b a ) L=\frac{N^2\mu_0h}{2\pi}\ln(\frac{b}{a}) L=2πN2μ0hln(ab)

49.注意忽略了导体棒中的磁通量,认为磁通量只存在于空隙中。

答案为: L = μ 0 i 2 π ln ⁡ ( b a ) L=\frac{\mu_0i}{2\pi}\ln(\frac ba) L=2πμ0iln(ab)

50.由于铁棒中存在分子电流,当外部产生磁场时,分子电流的磁矩方向同一,外部产生了等效的电流,称为束缚电流i’,因此实际上的电流值为 i = i 0 + i ′ i=i_0+i' i=i0+i

故通电螺线管中插入铁芯会增大磁场,因为铁芯会使电流增大。

磁化强度矢量用来描述束缚电流的分布: M × n = j ′ M\times n=j' M×n=j

并且有 ∮ M ⋅ l = ∑ i ′ \oint M\cdot l=\sum i' Ml=i

铁芯产生的束缚电流分布: M M M

本身导线中的电流分布: H = B μ 0 − M H=\frac{B}{\mu_0}-M H=μ0BM,也称磁场强度。

总的电流分布: B / μ 0 B/\mu_0 B/μ0

在通电螺线管中,往往只知道导线中电流的分布,因此需要借助H,H满足环路定理,i是导线中的电流。

∮ H d l = ∑ i \oint Hdl=\sum i Hdl=i

对于铁棒和螺线管: H L = i 0 n L HL=i_0nL HL=i0nL,

H = n i 0 H=ni_0 H=ni0

i 0 i_0 i0是每匝导体中的电流,n是单位长度匝数

磁位移矢量M是束缚电荷的分布: M = B / μ 0 − H M=B/\mu_0-H M=B/μ0H

51.放入磁场后增加了洛伦茨力提供向心力,注意默认半径不发生变化。

答案为 Δ w = e B 2 m \Delta w=\frac{eB}{2m} Δw=2meB

52.用电路电势的关系计算:
如果是刚闭合时: L d i d t + R i = ϵ L\frac{di}{dt}+Ri=\epsilon Ldtdi+Ri=ϵ

初始条件i=0.

如果是刚撤去电源时: L d i d t + R i = 0 L\frac{di}{dt}+Ri=0 Ldtdi+Ri=0

初始条件 i = ϵ R i=\frac{\epsilon}{R} i=Rϵ

解的时候第二个式子直接解,第一个式子把常数项和i放在一起。

另外e前面的待定系数C不要忘了。

53.需要解一个常微分方程。故略。

54.磁能密度的公式为: u B = B 2 2 μ 0 u_B=\frac {B^2}{2\mu_0} uB=2μ0B2

代入可得: u B = μ 0 n 2 i 2 2 u_B=\frac{\mu_0n^2i^2}{2} uB=2μ0n2i2

55.磁能密度分布为: B = μ 0 i 2 8 π 2 i 2 B=\frac{\mu_0i^2}{8\pi^2i^2} B=8π2i2μ0i2

得到能量为: U = ∫ u B d V = ∫ u B 2 π r d r L = μ 0 i 2 L 4 π ln ⁡ ( b a ) U=\int u_BdV=\int u_B2\pi rdrL=\frac{\mu_0i^2L}{4\pi}\ln(\frac ba) U=uBdV=uB2πrdrL=4πμ0i2Lln(ab)

并可以通过能量得到自感电动势。

56.使用能量守恒: U = 1 2 L i 2 + 1 2 q C 2 U=\frac12Li^2+\frac12\frac q{C^2} U=21Li2+21C2q

对时间求导为0: L d i d t + q c = 0 L\frac{di}{dt}+\frac{q}{c}=0 Ldtdi+cq=0

最后得到频率为 w = 1 L C w=\frac1{\sqrt{LC}} w=LC 1

57.略。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值