书生大模型实战营(暑假场)进阶岛关卡三——LMDeploy 量化部署进阶实践

基础任务

  • 使用结合W4A16量化与kv cache量化的internlm2_5-1_8b-chat模型封装本地API并与大模型进行一次对话,作业截图需包括显存占用情况与大模型回复,参考4.1 API开发(优秀学员必做),请注意2.2.3节与4.1节应使用作业版本命令。
  • 使用Function call功能让大模型完成一次简单的"加"与"乘"函数调用,作业截图需包括大模型回复的工具调用情况,参考4.2 Function call(选做)

一、环境配置

1.开发机选择 30% A100,镜像选择为 Cuda12.2-conda。

conda create -n hjl python=3.10 -y
conda activate hjl
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install timm==1.0.8 openai==1.40.3 lmdeploy[all]==0.5.3

2.InternStudio环境获取模型

为方便文件管理,我们需要一个存放模型的目录,本教程统一放置在/root/models/目录。

运行以下命令,创建文件夹并设置开发机共享目录的软链接。

mkdir /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-1_8b-chat /root/models
ln -s /root/share/new_models/OpenGVLab/InternVL2-26B /root/models

此时,我们可以看到/root/models中会出现internlm2_5-7b-chatinternlm2_5-1_8b-chatInternVL2-26B文件夹。

教程使用internlm2_5-7b-chat和InternVL2-26B作为演示。由于上述模型量化会消耗大量时间(约8h),量化作业请使用internlm2_5-1_8b-chat模型完成。

3.LMDeploy验证启动模型文件

在量化工作正式开始前,我们还需要验证一下获取的模型文件能否正常工作,以免竹篮打水一场空。

让我们进入创建好的conda环境并启动InternLM2_5-8b-chat!

conda activate hjl
lmdeploy chat /root/models/internlm2_5-1_8b-chat

稍待片刻,启动成功后,会显示如下。

此时,我们可以在CLI(“命令行界面” Command Line Interface的缩写)中和InternLM2.5尽情对话了,注意输入内容完成后需要按两次回车才能够执行,以下为示例。

现在显存占用约20GB

此外,如果想要实现显存资源的监控,我们也可以新开一个终端输入如下两条指令的任意一条,查看命令输入时的显存占用情况。

nvidia-smi 
studio-smi 

注释:实验室提供的环境为虚拟化的显存,nvidia-smi是NVIDIA GPU驱动程序的一部分,用于显示NVIDIA GPU的当前状态,故当前环境只能看80GB单卡 A100 显存使用情况,无法观测虚拟化后30%或50%A100等的显存情况。针对于此,实验室提供了studio-smi 命令工具,能够观测到虚拟化后的显存使用情况。

二、LMDeploy与InternLM2.5

1.LMDeply API部署InternLM2.5

在上一章节,我们直接在本地部署InternLM2.5。而在实际应用中,我们有时会将大模型封装为API接口服务,供客户端访问。

1.1 启动API服务器

首先让我们进入创建好的conda环境,并通下命令启动API服务器,部署InternLM2.5模型:

conda activate hjl
lmdeploy serve api_server \
    /root/models/internlm2_5-1_8b-chat \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

命令解释:

  1. lmdeploy serve api_server:这个命令用于启动API服务器。
  2. /root/models/internlm2_5-7b-chat:这是模型的路径。
  3. --model-format hf:这个参数指定了模型的格式。hf代表“Hugging Face”格式。
  4. --quant-policy 0:这个参数指定了量化策略。
  5. --server-name 0.0.0.0:这个参数指定了服务器的名称。在这里,0.0.0.0是一个特殊的IP地址,它表示所有网络接口。
  6. --server-port 23333:这个参数指定了服务器的端口号。在这里,23333是服务器将监听的端口号。
  7. --tp 1:这个参数表示并行数量(GPU数量)

稍待片刻,终端显示如下。

这一步由于部署在远程服务器上,所以本地需要做一下ssh转发才能直接访问。在你本地打开一个cmd或powershell窗口,输入命令如下:

 ssh -CNg -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的ssh端口号

然后打开浏览器,访问http://127.0.0.1:23333看到如下界面即代表部署成功。

1.2 以命令行形式连接API服务器

关闭http://127.0.0.1:23333网页,但保持终端和本地窗口不动,按操作新建一个终端。

运行如下命令,激活conda环境并启动命令行客户端。

conda activate hjl
lmdeploy serve api_client http://localhost:23333

稍待片刻,等出现double enter to end input >>>的输入提示即启动成功,此时便可以随意与InternLM2.5对话,同样是两下回车确定,输入exit退出。

1.3 以Gradio网页形式连接API服务器

保持第一个终端不动,在新建终端中输入exit退出。

输入以下命令,使用Gradio作为前端,启动网页。

lmdeploy serve gradio http://localhost:23333 \
    --server-name 0.0.0.0 \
    --server-port 6006

稍待片刻,等终端如下图所示便保持两个终端不动。

关闭之前的cmd/powershell窗口,重开一个,再次做一下ssh转发(因为此时端口不同)。在你本地打开一个cmd或powershell窗口,输入命令如下。

ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p <你的ssh端口号>

重复上述操作,待窗口保持在如下状态即可。

打开浏览器,访问地址http://127.0.0.1:6006,然后就可以与模型尽情对话了。

2.LMDeploy Lite

随着模型变得越来越大,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。LMDeploy 提供了权重量化和 k/v cache两种策略。

2.2 设置在线 kv cache int4/int8 量化

自 v0.4.0 起,LMDeploy 支持在线 kv cache int4/int8 量化,量化方式为 per-head per-token 的非对称量化。此外,通过 LMDeploy 应用 kv 量化非常简单,只需要设定 quant_policy 和cache-max-entry-count参数。目前,LMDeploy 规定 quant_policy=4 表示 kv int4 量化,quant_policy=8 表示 kv int8 量化。

我们通过2.1 LMDeploy API部署InternLM2.5的实践为例,输入以下指令,启动API服务器。

lmdeploy serve api_server \
    /root/models/internlm2_5-1_8b-chat \
    --model-format hf \
    --quant-policy 4 \
    --cache-max-entry-count 0.4\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

稍待片刻,显示如下即代表服务启动成功。

均因设置kv cache占用参数cache-max-entry-count至0.4而减少了8GB显存占用。

2.3 W4A16 模型量化和部署

准确说,模型量化是一种优化技术,旨在减少机器学习模型的大小并提高其推理速度。量化通过将模型的权重和激活从高精度(如16位浮点数)转换为低精度(如8位整数、4位整数、甚至二值网络)来实现。

那么标题中的W4A16又是什么意思呢?

  • W4:这通常表示权重量化为4位整数(int4)。这意味着模型中的权重参数将从它们原始的浮点表示(例如FP32、BF16或FP16,Internlm2.5精度为BF16)转换为4位的整数表示。这样做可以显著减少模型的大小。
  • A16:这表示激活(或输入/输出)仍然保持在16位浮点数(例如FP16或BF16)。激活是在神经网络中传播的数据,通常在每层运算之后产生。

因此,W4A16的量化配置意味着:

  • 权重被量化为4位整数。
  • 激活保持为16位浮点数。

让我们回到LMDeploy,在最新的版本中,LMDeploy使用的是AWQ算法,能够实现模型的4bit权重量化。输入以下指令,执行量化工作。(不建议运行,在InternStudio上运行需要8小时)

lmdeploy lite auto_awq \
   /root/models/internlm2_5-7b-chat \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 2048 \
  --w-bits 4 \
  --w-group-size 128 \
  --batch-size 1 \
  --search-scale False \
  --work-dir /root/models/internlm2_5-7b-chat-w4a16-4bit

完成作业时请使用1.8B模型进行量化:(建议运行以下命令)

lmdeploy lite auto_awq \
   /root/models/internlm2_5-1_8b-chat \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 2048 \
  --w-bits 4 \
  --w-group-size 128 \
  --batch-size 1 \
  --search-scale False \
  --work-dir /root/models/internlm2_5-1_8b-chat-w4a16-4bit

命令解释:

  1. lmdeploy lite auto_awqlite这是LMDeploy的命令,用于启动量化过程,而auto_awq代表自动权重量化(auto-weight-quantization)。
  2. /root/models/internlm2_5-7b-chat: 模型文件的路径。
  3. --calib-dataset 'ptb': 这个参数指定了一个校准数据集,这里使用的是’ptb’(Penn Treebank,一个常用的语言模型数据集)。
  4. --calib-samples 128: 这指定了用于校准的样本数量—128个样本
  5. --calib-seqlen 2048: 这指定了校准过程中使用的序列长度—2048
  6. --w-bits 4: 这表示权重(weights)的位数将被量化为4位。
  7. --work-dir /root/models/internlm2_5-7b-chat-w4a16-4bit: 这是工作目录的路径,用于存储量化后的模型和中间结果。

等终端输出如下时,说明正在推理中,稍待片刻。

等待推理完成,便可以直接在你设置的目标文件夹看到对应的模型文件。

我们可以输入如下指令查看在当前目录中显示所有子目录的大小。

cd /root/models/
du -sh *

输出结果如下。(其余文件夹都是以软链接的形式存在的,不占用空间,故显示为0)

那么原模型大小呢?输入以下指令查看。

cd /root/share/new_models/Shanghai_AI_Laboratory/
du -sh *

终端输出结果如下。

一经对比即可发觉,3.6G对1.5G,优势在我。

那么显存占用情况对比呢?输入以下指令启动量化后的模型。

lmdeploy chat /root/models/internlm2_5-1_8b-chat-w4a16-4bit/ --model-format=awq

稍待片刻,我们直接观测右上角的显存占用情况。

2.4 W4A16 量化+ KV cache+KV cache 量化

我知道你们肯定有人在想,介绍了那么多方法,能不能全都要?当然可以!

输入以下指令,让我们同时启用量化后的模型、设定kv cache占用和kv cache int4量化。

lmdeploy serve api_server \
    /root/models/internlm2_5-1_8b-chat-w4a16-4bit/ \
    --model-format awq \
    --quant-policy 4 \
    --cache-max-entry-count 0.4\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

此时显存占用11GB

三、LMDeploy之FastAPI与Function call

    之前在1.1 启动API服务器是借助FastAPI封装一个API出来让LMDeploy自行进行访问,在这一章节中我们将依托于LMDeploy封装出来的API进行更加灵活更具DIY的开发。

1.API开发

与之前一样,让我们进入创建好的conda环境并输入指令启动API服务器。

conda activate hjl
lmdeploy serve api_server \
    /root/models/internlm2_5-1_8b-chat-w4a16-4bit \
    --model-format awq \
    --cache-max-entry-count 0.4 \
    --quant-policy 4 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

保持终端窗口不动,新建一个终端。

在新建终端中输入如下指令,新建internlm2_5.py

touch /root/internlm2_5.py

此时我们可以在左侧的File Broswer中看到internlm2_5.py文件,双击打开。

将以下内容复制粘贴进internlm2_5.py

# 导入openai模块中的OpenAI类,这个类用于与OpenAI API进行交互
from openai import OpenAI


# 创建一个OpenAI的客户端实例,需要传入API密钥和API的基础URL
client = OpenAI(
    api_key='YOUR_API_KEY',  
    # 替换为你的OpenAI API密钥,由于我们使用的本地API,无需密钥,任意填写即可
    base_url="http://0.0.0.0:23333/v1"  
    # 指定API的基础URL,这里使用了本地地址和端口
)

# 调用client.models.list()方法获取所有可用的模型,并选择第一个模型的ID
# models.list()返回一个模型列表,每个模型都有一个id属性
model_name = client.models.list().data[0].id

# 使用client.chat.completions.create()方法创建一个聊天补全请求
# 这个方法需要传入多个参数来指定请求的细节
response = client.chat.completions.create(
  model=model_name,  
  # 指定要使用的模型ID
  messages=[  
  # 定义消息列表,列表中的每个字典代表一个消息
    {"role": "system", "content": "你是一个友好的小助手,负责解决问题."},  
    # 系统消息,定义助手的行为
    {"role": "user", "content": "帮我讲述一个关于狐狸和西瓜的小故事"},  
    # 用户消息,询问时间管理的建议
  ],
    temperature=0.8,  
    # 控制生成文本的随机性,值越高生成的文本越随机
    top_p=0.8  
    # 控制生成文本的多样性,值越高生成的文本越多样
)

# 打印出API的响应结果
print(response.choices[0].message.content)

Ctrl+S键保存(Mac用户按Command+S)。

现在让我们在新建终端输入以下指令激活环境并运行python代码。

conda activate hjl
python /root/internlm2_5.py

终端会输出如下结果。

此时代表我们成功地使用本地API与大模型进行了一次对话,如果切回第一个终端窗口,会看到如下信息,这代表其成功的完成了一次用户问题GET与输出POST。

2.Function call

关于Function call,即函数调用功能,它允许开发者在调用模型时,详细说明函数的作用,并使模型能够智能地根据用户的提问来输入参数并执行函数。完成调用后,模型会将函数的输出结果作为回答用户问题的依据。

首先让我们进入创建好的conda环境并启动API服务器。

conda activate hjl
lmdeploy serve api_server \
    /root/models/internlm2_5-1_8b-chat \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

目前LMDeploy在0.5.3版本中支持了对InternLM2, InternLM2.5和llama3.1这三个模型,故我们选用InternLM2.5 封装API。

让我们使用一个简单的例子作为演示。输入如下指令,新建internlm2_5_func.py

touch /root/internlm2_5_func.py

双击打开,并将以下内容复制粘贴进internlm2_5_func.py

from openai import OpenAI


def add(a: int, b: int):
    return a + b


def mul(a: int, b: int):
    return a * b


tools = [{
    'type': 'function',
    'function': {
        'name': 'add',
        'description': 'Compute the sum of two numbers',
        'parameters': {
            'type': 'object',
            'properties': {
                'a': {
                    'type': 'int',
                    'description': 'A number',
                },
                'b': {
                    'type': 'int',
                    'description': 'A number',
                },
            },
            'required': ['a', 'b'],
        },
    }
}, {
    'type': 'function',
    'function': {
        'name': 'mul',
        'description': 'Calculate the product of two numbers',
        'parameters': {
            'type': 'object',
            'properties': {
                'a': {
                    'type': 'int',
                    'description': 'A number',
                },
                'b': {
                    'type': 'int',
                    'description': 'A number',
                },
            },
            'required': ['a', 'b'],
        },
    }
}]
messages = [{'role': 'user', 'content': 'Compute (3+5)*2'}]

client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
    model=model_name,
    messages=messages,
    temperature=0.8,
    top_p=0.8,
    stream=False,
    tools=tools)
print(response)
func1_name = response.choices[0].message.tool_calls[0].function.name
func1_args = response.choices[0].message.tool_calls[0].function.arguments
func1_out = eval(f'{func1_name}(**{func1_args})')
print(func1_out)

messages.append({
    'role': 'assistant',
    'content': response.choices[0].message.content
})
messages.append({
    'role': 'environment',
    'content': f'3+5={func1_out}',
    'name': 'plugin'
})
response = client.chat.completions.create(
    model=model_name,
    messages=messages,
    temperature=0.8,
    top_p=0.8,
    stream=False,
    tools=tools)
print(response)
func2_name = response.choices[0].message.tool_calls[0].function.name
func2_args = response.choices[0].message.tool_calls[0].function.arguments
func2_out = eval(f'{func2_name}(**{func2_args})')
print(func2_out)

现在让我们输入以下指令运行python代码。

python /root/internlm2_5_func.py

稍待片刻终端输出如下

报错TypeError: 'NoneType' object is not subscriptable

可以看出第二轮输出报错,当我使用internlm2_5-7b-chat模型时就正常了

不过1.8b的模型也可以正确输出,但是要多次执行python /root/internlm2_5_func.py

可以从截图中看出我反复执行了177次才得到我想要的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值