0 基础知识
预备知识1 -- LLM模型显存占用
对于一个7B(70亿)参数的模型,如果每个参数使用16位浮点数(等于 2个 Byte)表示,则模型的权重大小约为:
70×10^9 parameters×2 Bytes/parameter=14GB
70亿个参数×每个参数占用2个字节=14GB
预备知识2 -- KV cache
kv cache是一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗的目的。在大规模训练和推理中,kv cache可以显著减少重复计算量,从而提升模型的推理速度。理想情况下,kv cache全部存储于显存,以加快访存速度。
模型在运行时,占用的显存可大致分为三部分:模型参数本身占用的显存、kv cache占用的显存,以及中间运算结果占用的显存。
LMDeploy的kv cache管理器可以通过设置--cache-max-entry-count
参数,控制kv缓存占用剩余显存的最大比例。默认的比例为0.8。
举例:
对于24GB的显卡,权重占用14GB显存,剩余显存24-14=10GB,因此kv cache占用10GB*0.8=8GB,加上原来的权重14GB,总共占用14+8=22GB。
对于40GB的显卡,权重占用14GB,剩余显存40-14=26GB,因此kv cache占用26GB*0.8=20.8GB,加上原来的权重14GB,总共占用34.8GB。
实际加载模型后,其他项也会占用部分显存,因此剩余显存比理论偏低,实际占用会略高于22GB和34.8GB。
1 配置LMDeploy环境
1.1 环境搭建
conda create -n lmdeploy python=3.10 -y
conda activate lmdeploy
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install timm==1.0.8 openai==1.40.3 lmdeploy[all]==0.5.3
1.2 InternStudio环境获取模型
mkdir /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-1_8b-chat /root/models
ln -s /root/share/new_models/OpenGVLab/InternVL2-26B /root/models
1.3 LMDeploy验证启动模型文件
conda activate lmdeploy
lmdeploy chat /root/models/internlm2_5-7b-chat
显存占用:22980M, 符合上面的推算
2 LMDeploy与InternLM2.5
2.1 LMDeploy API部署InternLM2.5
2.1.1 启动API服务器
conda activate lmdeploy
lmdeploy serve api_server \
/root/models/internlm2_5-7b-chat \
--model-format hf \
--quant-policy 0 \
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
命令解释:
lmdeploy serve api_server:这个命令用于启动API服务器。
/root/models/internlm2_5-7b-chat:这是模型的路径。
--model-format hf:这个参数指定了模型的格式。hf代表“Hugging Face”格式。
--quant-policy 0:这个参数指定了量化策略。
--server-name 0.0.0.0:这个参数指定了服务器的名称。在这里,0.0.0.0是一个特殊的IP地址,它表示所有网络接口。
--server-port 23333:这个参数指定了服务器的端口号。在这里,23333是服务器将监听的端口号。
--tp 1:这个参数表示并行数量(GPU数量)。
这一步由于部署在远程服务器上,所以本地需要做一下ssh转发才能直接访问。在你本地打开一个cmd或powershell窗口,输入命令如下:
ssh -CNg -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的ssh端口号
2.1.2 以命令行形式连接API服务器
关闭http://127.0.0.1:23333
网页,但保持终端和本地窗口不动,按箭头操作新建一个终端。
运行如下命令,激活conda环境并启动命令行客户端。
conda activate lmdeploy
lmdeploy serve api_client http://localhost:23333
稍待片刻,等出现double enter to end input >>>
的输入提示即启动成功,此时便可以随意与InternLM2.5对话,同样是两下回车确定,输入exit
退出。
2.1.3 以Gradio网页形式连接API服务器
保持第一个终端不动,在新建终端中输入exit
退出。
输入以下命令,使用Gradio作为前端,启动网页。
lmdeploy serve gradio http://localhost:23333 \
--server-name 0.0.0.0 \
--server-port 6006
重新本地打开一个cmd或powershell窗口,输入命令如下。
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p <你的ssh端口号>
打开浏览器,访问地址http://127.0.0.1:6006
,然后就可以与模型尽情对话了。
显存占用:23140M
2.2 LMDeploy Lite
2.2.2 设置在线 kv cache int4/int8 量化
自 v0.4.0 起,LMDeploy 支持在线 kv cache int4/int8 量化,量化方式为 per-head per-token 的非对称量化。此外,通过 LMDeploy 应用 kv 量化非常简单,只需要设定 quant_policy
和cache-max-entry-count
参数。目前,LMDeploy 规定 qant_policy=4
表示 kv int4 量化,quant_policy=8
表示 kv int8 量化。
cache-max-entry-count = 0.4
lmdeploy serve api_server \
/root/models/internlm2_5-7b-chat \
--model-format hf \
--quant-policy 4 \
--cache-max-entry-count 0.4\
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
显存占用:19420M = 14G + (24 - 14)*0.4 + 额外的 = 18G - 19G
cache-max-entry-count = 0.4、quant_policy = 4
显存占用:19420M,没有变化。原因如下:
由于都使用BF16精度下的internlm2.5 7B模型,故剩余显存均为10GB,且 cache-max-entry-count
均为0.4,这意味着LMDeploy将分配40%的剩余显存用于kv cache,即10GB*0.4=4GB。但quant-policy
设置为4时,意味着使用int4精度进行量化。因此,LMDeploy将会使用int4精度提前开辟4GB的kv cache。
相比使用BF16精度的kv cache,int4的Cache可以在相同4GB的显存下只需要4位来存储一个数值,而BF16需要16位。这意味着int4的Cache可以存储的元素数量是BF16的四倍。
2.2.3 W4A16 模型量化和部署
量化通过将模型的权重和激活从高精度(如16位浮点数)转换为低精度(如8位整数、4位整数、甚至二值网络)来实现。
W4:这通常表示权重量化为4位整数(int4)。这意味着模型中的权重参数将从它们原始的浮点表示(例如FP32、BF16或FP16,Internlm2.5精度为BF16)转换为4位的整数表示。这样做可以显著减少模型的大小。
A16:这表示激活(或输入/输出)仍然保持在16位浮点数(例如FP16或BF16)。激活是在神经网络中传播的数据,通常在每层运算之后产生。
因此,W4A16的量化配置意味着:
权重被量化为4位整数。
激活保持为16位浮点数。
模型量化
模型量化后部署
显存占用:21002M
1、在 int4 精度下,7B模型权重占用3.5GB:14/4=3.5GB
注释:
bfloat16
是16位的浮点数格式,占用2字节(16位)的存储空间。int4
是4位的整数格式,占用0.5字节(4位)的存储空间。因此,从bfloat16
到int4
的转换理论上可以将模型权重的大小减少到原来的1/4,即7B个int4
参数仅占用3.5GB的显存。
2、kv cache占用16.4GB:剩余显存24-3.5=20.5GB,kv cache默认占用80%,即20.5*0.8=16.4GB
3、其他项1GB
是故20.9GB=权重占用3.5GB+kv cache占用16.4GB+其它项1GB
2.2.4 W4A16 量化+ KV cache+KV cache 量化
lmdeploy serve api_server \
/root/models/internlm2_5-7b-chat-w4a16-4bit/ \
--model-format awq \
--quant-policy 4 \
--cache-max-entry-count 0.4\
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
显存占用:13574, 计算方式同上
4:LMDeploy之FastAPI与Function call
显存占用:13578
显存占用:23172
完成作业时请使用1.8B模型进行量化,所以使用1.8B模型再重新量化一次
lmdeploy lite auto_awq \
/root/models/internlm2_5-1_8b-chat \
--calib-dataset 'ptb' \
--calib-samples 128 \
--calib-seqlen 2048 \
--w-bits 4 \
--w-group-size 128 \
--batch-size 1 \
--search-scale False \
--work-dir /root/models/internlm2_5-1_8b-chat-w4a16-4bit
命令解释:
lmdeploy lite auto_awq: lite这是LMDeploy的命令,用于启动量化过程,而auto_awq代表自动权重量化(auto-weight-quantization)。
/root/models/internlm2_5-7b-chat: 模型文件的路径。
--calib-dataset 'ptb': 这个参数指定了一个校准数据集,这里使用的是’ptb’(Penn Treebank,一个常用的语言模型数据集)。
--calib-samples 128: 这指定了用于校准的样本数量—128个样本
--calib-seqlen 2048: 这指定了校准过程中使用的序列长度—2048
--w-bits 4: 这表示权重(weights)的位数将被量化为4位。
--work-dir /root/models/internlm2_5-7b-chat-w4a16-4bit: 这是工作目录的路径,用于存储量化后的模型和中间结果。
量化后的模型在models文件夹:
4.1 API开发
与之前一样,让我们进入创建好的conda环境并输入指令启动API服务器。
conda activate lmdeploy
lmdeploy serve api_server \
/root/models/internlm2_5-1_8b-chat-w4a16-4bit \
--model-format awq \
--cache-max-entry-count 0.4 \
--quant-policy 4 \
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
新建终端中输入如下指令,新建internlm2_5.py
。
touch /root/internlm2_5.py
将以下内容复制粘贴进internlm2_5.py
。
# 导入openai模块中的OpenAI类,这个类用于与OpenAI API进行交互
from openai import OpenAI
# 创建一个OpenAI的客户端实例,需要传入API密钥和API的基础URL
client = OpenAI(
api_key='YOUR_API_KEY',
# 替换为你的OpenAI API密钥,由于我们使用的本地API,无需密钥,任意填写即可
base_url="http://0.0.0.0:23333/v1"
# 指定API的基础URL,这里使用了本地地址和端口
)
# 调用client.models.list()方法获取所有可用的模型,并选择第一个模型的ID
# models.list()返回一个模型列表,每个模型都有一个id属性
model_name = client.models.list().data[0].id
# 使用client.chat.completions.create()方法创建一个聊天补全请求
# 这个方法需要传入多个参数来指定请求的细节
response = client.chat.completions.create(
model=model_name,
# 指定要使用的模型ID
messages=[
# 定义消息列表,列表中的每个字典代表一个消息
{"role": "system", "content": "你是一个友好的小助手,负责解决问题."},
# 系统消息,定义助手的行为
{"role": "user", "content": "帮我讲述一个关于狐狸和西瓜的小故事"},
# 用户消息,询问时间管理的建议
],
temperature=0.8,
# 控制生成文本的随机性,值越高生成的文本越随机
top_p=0.8
# 控制生成文本的多样性,值越高生成的文本越多样
)
# 打印出API的响应结果
print(response.choices[0].message.content)
运行刚才的脚本
python /root/internlm2_5.py
显存占用:17928
4.2 Function call
关于Function call,即函数调用功能,它允许开发者在调用模型时,详细说明函数的作用,并使模型能够智能地根据用户的提问来输入参数并执行函数。完成调用后,模型会将函数的输出结果作为回答用户问题的依据。
首先让我们进入创建好的conda环境并启动API服务器。
conda activate lmdeploy
lmdeploy serve api_server \
/root/models/internlm2_5-7b-chat \
--model-format hf \
--quant-policy 0 \
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
目前LMDeploy在0.5.3版本中支持了对InternLM2, InternLM2.5和llama3.1这三个模型,故我们选用InternLM2.5 封装API。
让我们使用一个简单的例子作为演示。输入如下指令,新建internlm2_5_func.py
。
touch /root/internlm2_5_func.py
双击打开,并将以下内容复制粘贴进internlm2_5_func.py
。
from openai import OpenAI
def add(a: int, b: int):
return a + b
def mul(a: int, b: int):
return a * b
tools = [{
'type': 'function',
'function': {
'name': 'add',
'description': 'Compute the sum of two numbers',
'parameters': {
'type': 'object',
'properties': {
'a': {
'type': 'int',
'description': 'A number',
},
'b': {
'type': 'int',
'description': 'A number',
},
},
'required': ['a', 'b'],
},
}
}, {
'type': 'function',
'function': {
'name': 'mul',
'description': 'Calculate the product of two numbers',
'parameters': {
'type': 'object',
'properties': {
'a': {
'type': 'int',
'description': 'A number',
},
'b': {
'type': 'int',
'description': 'A number',
},
},
'required': ['a', 'b'],
},
}
}]
messages = [{'role': 'user', 'content': 'Compute (3+5)*2'}]
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.8,
top_p=0.8,
stream=False,
tools=tools)
print(response)
func1_name = response.choices[0].message.tool_calls[0].function.name
func1_args = response.choices[0].message.tool_calls[0].function.arguments
func1_out = eval(f'{func1_name}(**{func1_args})')
print(func1_out)
messages.append({
'role': 'assistant',
'content': response.choices[0].message.content
})
messages.append({
'role': 'environment',
'content': f'3+5={func1_out}',
'name': 'plugin'
})
response = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.8,
top_p=0.8,
stream=False,
tools=tools)
print(response)
func2_name = response.choices[0].message.tool_calls[0].function.name
func2_args = response.choices[0].message.tool_calls[0].function.arguments
func2_out = eval(f'{func2_name}(**{func2_args})')
print(func2_out)
运行脚本:
python /root/internlm2_5_func.py
我们可以看出InternLM2.5将输入'Compute (3+5)*2'
根据提供的function拆分成了"加"和"乘"两步,第一步调用function add
实现加,再于第二步调用function mul
实现乘,再最终输出结果16.