24届c9学校材料与化工专业的研究生,本科材料双非,现在在一家国企做工艺,制造业,环境比较恶劣,已经上班快一年了,这个情况,想转码或者算法工程师等软件相关的行业,在现在这个就业环境下,是否还具有可行性?请各位指点迷津,目前快27岁了
兄弟,我看到你这个问题其实挺感慨的,像极了身边好几个熟人走过的路。C9硕士,本科双非材料,现在国企制造业做工艺,环境差、成长慢、没前途,一年后想转行——你这不就是那种“国企出逃记”的典型剧本吗?
其实转码也好,转算法也好,2025年了,当然还有机会。不光有机会,甚至比你想象的还要宽敞——前提是你动手开始。你现在面临的问题其实不是“行不行”,而是“敢不敢”。
但是现在就业大环境不是很好,所以我建议你可以在职学习,然后还是在公司内部进行转岗做AI,而不是直接转行。即使做算法也最好是结合自己的行业背景去做,而不是完全跨到一个自己完全不懂的行业。
先给你吃个定心丸。我身边就有两个例子,背景和你类似,一个是北理材料硕,转做推荐算法,去年入职字节;
**另一个是浙大化工,干了两年工厂,辞职在家自学一年,现在在一家工业AI初创做预测性维护模型的开发,听他说最近刚拿到期权。**他们共同点就是,学历还不错,但都不是计算机出身,都是靠后天努力硬转过来的。所以你担心的年龄、出身、专业这些,其实都不是决定因素。
你干的是工艺岗,说实话,只要你未来算法做得好,能搞点工业智能、AI质检、材料建模相关的项目,那你在这个圈子里会特别有辨识度。
现在公司也在找“既懂行业又懂AI”的复合型人才,你正好可以去做那个“左手材料、右手模型”的人。
转算法不是说你明天就能写出GPT,它是一条需要规划、执行和耐心的路。但你现在这个起点,其实刚刚好。C9硕士是敲门砖,本科双非可以靠项目和实战补回来。
说实话,现在算法岗是卷,没以前好进,但这行业就是这样——高门槛,但高回报。再卷也有人上岸啊,不卷你在原地不动又能怎样?看看现在的招聘吧。
我推荐你从最实在的地方入手,别一上来就说我要“掌握深度强化学习从理论到实战”,那是PPT里的计划。
现实里,你得先学Python,然后理解基本的机器学习算法:逻辑回归、决策树、SVM、随机森林这些先搞定,再进入深度学习:多层感知机、CNN、RNN、LSTM、transformer,搞定一个框架:PyTorch。前面这些都能靠B站+书+课程学掉。
但就像你现在这种情况,白天上班晚上累得像条狗,真要靠自己搜资源,没体系、没反馈、没人督促,很容易三天打鱼两天摸鱼,然后又回去刷短视频了。
所以如果你真的下定决心,强烈建议你找个靠谱的课程或者学习路径系统性地搞。我这里就插个非常实在的建议(也是身边人都在用的资料)
如果你真想靠“转型+项目”打动算法面试官,这种公开课是最靠谱的桥梁之一。不是广告,我真心觉得比你一个人埋头啃Paper效率高太多。
继续说回现实。你现在要做的,其实不是考虑“这个方向能不能成功”,而是“这个方向是不是值得你花一年时间去努力”。
说句残酷点的,哪怕你学了一年,最后没进top大厂,但你掌握了算法开发能力、会模型训练和调参**,能独立做小项目,就已经是市面上很多初创公司、工业智能平台在找的人了。**
而且你别忘了,你懂制造业,你熟工艺流程,你知道工厂在算什么KPI、怎么提效、哪里有瑕疵,这些如果结合AI,不就正好是未来几年的风口吗?大模型现在都在“行业落地”的阶段,OpenAI都说要搞垂直化场景,你这种能把AI真正接进现场的人,是金子不是铁钉。
这点我特别有体会,我有个朋友在做锂电池厂的智能质检,原来也是材料出身,后来转搞图像识别,用AI检测电芯缺陷,现在在一个工业AI公司,年薪比他以前高一倍多,最关键是他说:“我做的东西终于能在工厂落地了,感觉特踏实。”
你说你27岁了,其实说白了你还有大把机会。现在互联网行业都不算“年轻吃香”那种了,更看重的是你能不能干活、能不能独立扛项目、能不能对结果负责。只要你技能到位,27岁反而比22岁更有优势——你不是学生思维,你是真正在解决问题。
写到这,我其实就想说一句话:别让“环境不好”这个借口困住了你行动的脚步。因为再差的环境,也有人逆势翻盘。关键不是大环境,是你有没有动起来。别让自己五年后回头看现在,才后悔当初没早点开始。
现在就打开笔记本,下载Anaconda,装上PyTorch,开始写你的第一个“Hello, World”神经网络模型。也可以点开知乎知学堂那个公开课的主页,看看别人是怎么从零开始做出一个AI项目的。一步一步来,不急,稳扎稳打,你一定能把自己从工艺人,变成算法人。
你不是没机会,只是还没真正开始走。走上这条路以后,你就会发现:其实远方并不远,只是你迈出第一步之前,它看起来才那么远。
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
9周快速成为大模型工程师
第1周:基础入门
-
了解大模型基本概念与发展历程
-
学习Python编程基础与PyTorch/TensorFlow框架
-
掌握Transformer架构核心原理
-
第2周:数据处理与训练
-
学习数据清洗、标注与增强技术
-
掌握分布式训练与混合精度训练方法
-
实践小规模模型微调(如BERT/GPT-2)
第3周:模型架构深入
-
分析LLaMA、GPT等主流大模型结构
-
学习注意力机制优化技巧(如Flash Attention)
-
理解模型并行与流水线并行技术
第4周:预训练与微调
-
掌握全参数预训练与LoRA/QLoRA等高效微调方法
-
学习Prompt Engineering与指令微调
-
实践领域适配(如医疗/金融场景)
第5周:推理优化
-
学习模型量化(INT8/FP16)与剪枝技术
-
掌握vLLM/TensorRT等推理加速工具
-
部署模型到生产环境(FastAPI/Docker)
第6周:应用开发 - 构建RAG(检索增强生成)系统
-
开发Agent类应用(如AutoGPT)
-
实践多模态模型(如CLIP/Whisper)
第7周:安全与评估
-
学习大模型安全与对齐技术
-
掌握评估指标(BLEU/ROUGE/人工评测)
-
分析幻觉、偏见等常见问题
第8周:行业实战 - 参与Kaggle/天池大模型竞赛
- 复现最新论文(如Mixtral/Gemma)
- 企业级项目实战(客服/代码生成等)
第9周:前沿拓展
- 学习MoE、Long Context等前沿技术
- 探索AI Infra与MLOps体系
- 制定个人技术发展路线图
👉福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】