看看哪些是大概率要寄的路,别走,就更容易找到出路。
首先,避债。
现在是化债期,说人话就是“之前有人欠下了很多债,现在他们想把债给甩下去”。
典型如前几年高位买房,就是用自己坚实的劳动收益去接地方上的土地财政泡沫,帮人化债。
往大了说,生育率也是。
之前把太多生育养育成本扔给家庭自己承担,居民负债率扛不动后生育率暴跌。例如18年新生人口降200万,那年居民杠杆率60.4%,和日本90年的68.4%接近。
为了“廉价劳动力优势”,把人口再生产的成本甩给家庭,在工业化社会里就是抠逼,就是一种隐性债。
在社会福利不增加时继续生育,也是帮人化债。
往杂了说,大量低回报的教育也是债。
咱这大学扩招的源头之一,是为了提振内需和延迟就业:

出自98年“高校扩招之父”汤敏的建议书,只有第五点算勉强和学习有关。
既然是为了延迟就业而非优先满足劳动力市场需求的扩招,自然就会掺杂很多垃圾专业。
这也是一种隐性债,只是这种债被过去二十年的高增长带来的就业需求给消化了。
但当高增长一放缓,垃圾专业与劳动力市场需求的不匹配就会爆发出来,就要还债。
粗暴地说,高素质/低成本/量大的劳动力,是咱这过去二十年“发债”的基础;
这债本来也不是不能发,二十年全球化带来的收益还得起,还有找头;
但各种强制力把债务放大了,大到远超过劳动力本身的收益。最终在多重因素叠加下泡沫破灭。
所以现在遍地是债。卖不出去的房子是债,不匹配的青年就业是债,人口结构是债,鼓励民企参与基建的社会化融资也是债。
因此普通人现在要避债,你接不住这漫天的花火。
避债的核心思路也很简单:回归本金逻辑。
看到房价,想想未来二十年收入一分不增的前提下还不还得起,不要想置换也不要想暴富;
做生意,放弃纳斯达克敲钟或投融资的念头,单纯考虑这点业务能不能把本金赚回来。
以本金逻辑去思考你的人生重大负债选择,如买房结婚生娃创业跳槽等。
只要扎实避债,路有多活不敢说,肯定不易死。
其次,努力变得稀缺点。
人中龙凤们有各种手段变得稀缺,但普通人就一个大方向:成为相对稀缺的劳动力。
到2030年,适龄劳动力大概也就8亿多点。就算延迟退休可以补充几千万,那也只是辅助劳动力。
需要跑腿动手的、偏居民消费的、具有一定技能积累的劳动溢价会逐步走高。
注意,一定要倾向技能积累和居民消费。
因为随着数据化和自动化,无脑体力劳动的溢价很可能会因为标准化而增长缓慢。
一则是劳动复杂度走低,可替代性高;二则大量在国内完成标准化的制造业就业有可能被逐步输出到东南亚等人口增长区,咱这留存的增量可能不大。
但偏居民消费的服务类技能工种大概率会留下来,除非大举开放移民。
做一些不接触危险化工机械环境的蓝领或个体户工作,肯定会比低薪伪白领要强。
最后,跟随人口和投资。
“新质生产力”,咱不懂。
但“好的人口”很容易懂,年轻人多呗;“好的投资”也好懂,回报率高呗。
年轻人聚集地是首选,再穷,他们的消费倾向也是积极的;
“有活力的投资”不那么好懂,但那些趴在账上左手倒右手的永续债明显不是“有活力”。
对新兴行业的持续投资、高增长民用品出口品、独居消费、新技术应用带来的企业软硬件迭代,这些大概率算是“好的投资”。
这些投资能带来更多就业,红利也能外溢到更大范围。在新兴产业园旁开早餐店比承包一个机关食堂要容易得多。
跟着这些人和钱走,容错率大很多。
总之,大环境是不咋地,2月社消零售总额的季调环比才0.03%,还是躺。
但1-2月的吃/穿/用的零售增速分别有26.1%/17.8%/10.8%嘛。
可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习_,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。
为了帮助大家打破壁垒,快速了解大模型核心技术原理,学习相关大模型技术。从原理出发真正入局大模型。在这里我和MoPaaS魔泊云联合梳理打造了系统大模型学习脉络,这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码免费领取🆓**⬇️⬇️⬇️

【大模型全套视频教程】
教程从当下的市场现状和趋势出发,分析各个岗位人才需求,带你充分了解自身情况,get 到适合自己的 AI 大模型入门学习路线。
从基础的 prompt 工程入手,逐步深入到 Agents,其中更是详细介绍了 LLM 最重要的编程框架 LangChain。最后把微调与预训练进行了对比介绍与分析。
同时课程详细介绍了AI大模型技能图谱知识树,规划属于你自己的大模型学习路线,并且专门提前收集了大家对大模型常见的疑问,集中解答所有疑惑!

深耕 AI 领域技术专家带你快速入门大模型
跟着行业技术专家免费学习的机会非常难得,相信跟着学习下来能够对大模型有更加深刻的认知和理解,也能真正利用起大模型,从而“弯道超车”,实现职业跃迁!

【精选AI大模型权威PDF书籍/教程】
精心筛选的经典与前沿并重的电子书和教程合集,包含《深度学习》等一百多本书籍和讲义精要等材料。绝对是深入理解理论、夯实基础的不二之选。

【AI 大模型面试题 】
除了 AI 入门课程,我还给大家准备了非常全面的**「AI 大模型面试题」,**包括字节、腾讯等一线大厂的 AI 岗面经分享、LLMs、Transformer、RAG 面试真题等,帮你在面试大模型工作中更快一步。
【大厂 AI 岗位面经分享(92份)】

【AI 大模型面试真题(102 道)】

【LLMs 面试真题(97 道)】

【640套 AI 大模型行业研究报告】

【AI大模型完整版学习路线图(2025版)】
明确学习方向,2025年 AI 要学什么,这一张图就够了!

👇👇点击下方卡片链接免费领取全部内容👇👇

抓住AI浪潮,重塑职业未来!
科技行业正处于深刻变革之中。英特尔等巨头近期进行结构性调整,缩减部分传统岗位,同时AI相关技术岗位(尤其是大模型方向)需求激增,已成为不争的事实。具备相关技能的人才在就业市场上正变得炙手可热。
行业趋势洞察:
- 转型加速: 传统IT岗位面临转型压力,拥抱AI技术成为关键。
- 人才争夺战: 拥有3-5年经验、扎实AI技术功底和真实项目经验的工程师,在头部大厂及明星AI企业中的薪资竞争力显著提升(部分核心岗位可达较高水平)。
- 门槛提高: “具备AI项目实操经验”正迅速成为简历筛选的重要标准,预计未来1-2年将成为普遍门槛。
与其观望,不如行动!
面对变革,主动学习、提升技能才是应对之道。掌握AI大模型核心原理、主流应用技术与项目实战经验,是抓住时代机遇、实现职业跃迁的关键一步。

01 为什么分享这份学习资料?
当前,我国在AI大模型领域的高质量人才供给仍显不足,行业亟需更多有志于此的专业力量加入。
因此,我们决定将这份精心整理的AI大模型学习资料,无偿分享给每一位真心渴望进入这个领域、愿意投入学习的伙伴!
我们希望能为你的学习之路提供一份助力。如果在学习过程中遇到技术问题,也欢迎交流探讨,我们乐于分享所知。
*02 这份资料的价值在哪里?*
专业背书,系统构建:
-
本资料由我与MoPaaS魔泊云的鲁为民博士共同整理。鲁博士拥有清华大学学士和美国加州理工学院博士学位,在人工智能领域造诣深厚:
-
- 在IEEE Transactions等顶级学术期刊及国际会议发表论文超过50篇。
- 拥有多项中美发明专利。
- 荣获吴文俊人工智能科学技术奖(中国人工智能领域重要奖项)。
-
目前,我有幸与鲁博士共同进行人工智能相关研究。

内容实用,循序渐进:
-
资料体系化覆盖了从基础概念入门到核心技术进阶的知识点。
-
包含丰富的视频教程与实战项目案例,强调动手实践能力。
-
无论你是初探AI领域的新手,还是已有一定技术基础希望深入大模型的学习者,这份资料都能为你提供系统性的学习路径和宝贵的实践参考,助力你提升技术能力,向大模型相关岗位转型发展。



抓住机遇,开启你的AI学习之旅!

20万+

被折叠的 条评论
为什么被折叠?



