自动调制分类发展历程

本文梳理了机器学习在自动调制分类(AMC)中的发展历程,从基于可能性和特征的分类方法,到使用Kolmogorov-Smirnov测试、人工神经网络、支持向量机、遗传算法、深度学习等多种技术的进步。文章列举了多个研究案例,展示了在不同信噪比和调制类型下,这些方法的分类准确率和适用性,强调了深度学习模型在处理复杂数据结构和提高分类准确性方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作为一名即将进入研究生阶段的学生,将机器学习用于自动调制分类的发展历程整理如下,供今后参考学习之用,深入了解之人大可莞尔。


                          机器学习用于信号自动调制分类的发展

自动调制分类(AMC)是信号解调之间的环节。对于一个对接收信号不了解或了解很少的接收机来说,这是一个非常重要的过程。自动调制分类器的设计包括两个步骤:输入信号的预处理和分类算法的选择。第二步,采用了两种分类方法。第一种方法是基于可能性的(LB)方法,第二种方法称为基于特征的(FB)方法。

对于LB方法:M. L. D. Wong和A. K. Nandi使用极大似然(ML)分类器对相幅调制方案[1]进行分类。他们引入了信噪比估计的思想,提出了一种估计ML分类器 (EsML)。他们建议使用最小距离分类器来降低EsML分类器的复杂度。他们还使用盲源分离(BSS)来纠正载波相位偏移问题。W. Wei和M. Mendel使用极大似然(ML)方法对数字幅度相位调制[2]进行分类。他们给出了任何使用理想条件的分类器的上界,并假设可用符号的数量是无穷大。

对于FB:方法Xi和Wu在通用框架中使用高阶统计量进行盲信道估计和模式识别[3]。他们的方法的优点是不需要完整的通道信息。Wong和Nandi将遗传算法(GA)和人工神经网络(ANN)[4]用于AMC。利用遗传算法选择统计特征集和光谱特征集的最佳特征子集。他们提出了AMC的弹性反向传播(RPROP)算法。Swami和Sadler使用四阶累积量对ASK、PSK和QAM信号[5]进行分类。他们的方法在存在频率和相位偏移的情况下是健壮的。Wong和Nandi利用朴素贝叶斯分类器结合高阶统计AMC[6]。他们的方法对于载波和相位偏移的存在是鲁棒的。

使用机器学习方法尝试AMC的例子:

在[7]中,F. Wang和X. Wang使用Kolmogorov-Smirnov (KS)测试较小的信号样本。在[7]中提出的方法使用少量的样本提供了良好的分类精度,但是性能的改善只与高信噪比有关。[7]中已经证明了KS结果和累积结果在0 dB到10 dB之间非常相似,改进仅从10 dB到20 dB。

在[8]中,利用离线CDF曲线降低了KS分类器的复杂度,但离线CDF曲线的ECDF计算和比较仍然存在。

Azzouz和Nandi[9]-[10]使用ANN对模拟信号和数字调制信号进行分类。Wong和Nandi为了同样的目的使用ANN和GA[11]。

在[12]中,Wong, Ting和Nandi给出了[13]中使用的相同调制的结果。信噪比为10 dB时他们取得的性能为90.2%,94.4%和97.9%在512、1024和2048点处分别使用朴素贝叶斯分类器。在相同信噪比和样本数下,支持向量机的性能分别为91.2%、94.8%和97.9%。他们还使用SVM和ML进行分类。

Dobre, Ness和Su使用八阶循环累积量[14]的分类准确率为70%,使用2000个样本,信噪比为10dB。

Lanjun和Canyan[15]将谱相关函数与神经网络相结合对四种调制(BPSK、QPSK、QAM16和QAM64)的分类准确率为78.8%,使用8192个样本,信噪比为10dB。

Shi、Gong和Guan[16]使用特征函数法来补偿高阶QAMs分类中累积量的低效性。他们报告了16QAM和64QAM在10dB的信噪比下的2000个样本的83%分类准确率。但他们在研究中引入了时间偏移量,并假定它是固定在一个符号框架内的。

在[17]中,Swami和Sadler详细分析了使用累积量对不同数字调制方案的分类,有90%的分类准确率,但是他们的方法有一些局限性。有两个限制:首先假设条件是无噪声的,其次使用的样本数量超过10000。

Chaithanya和Reddy[18]对于QAM16和QAM64的分类准确率为93.5%,使用1000个符号,信噪比为10dB。

Xi和Wu使用四阶累积量[19]的分类准确率为94%,使用2000个样本,此时信噪比为10 dB,使用的调制分别是QAM4、QAM16和QAM64。

Wu、Saquib和Yun[20]用高阶统计量对QAM4、QAM16和QAM64的分类准确率达到94%,使用2000个样本,信噪比为10dB。

Mirarab和Sobhani使用了八阶累积量和阈值依赖树结构[21]的分类准确率为94%,使用2000个样本,信噪比为15dB。

[22]采用了[17]中提出的方法,在信噪比范围内对四种调制进行分类,研究结果清楚地证明了GP与KNN结合的方法在性能上的改善,并根据实验结果得出GP-KNN对于广泛的信噪比具有很强的鲁棒性,并且具有很好的性能退化。

Han等人[23]采用支持向量机(Support Vector Machine, SVM)进行调制分类。然而基于GP-KNN和SVM的方法都容易受到频率和相位偏移的影响,因此,不完美的同步会显著降低它们的性能。

Yizhou Jiang, Sai Huang, Yifan Zhang和Zhiyong Feng提出了基于多基因遗传规划(MGGP)采用多项Logistic回归的调制分类以进一步提高低信噪比下的性能并减少了系统的复杂度[24]。该方案包括两个阶段。在训练阶段,MGGP生成各种映射,将SCFs转换为新特性,MLR选择一些非常独特的新特性作为MGGP特性,映射为特性优化函数(FOFs)。同时输出相应的基于MLR的分类器。在分类阶段,由FOFs对SCFs进行变换,经过训练的分类器用MGGP特征值识别信号格式。在1024个样本时,当信噪比范围从-10dB到10dB变化时,MGGP-MLR的分类准确率始终高于SVM,ANN以及KNN方法并趋于平稳。

为了克服传统k均值算法存在的聚类效果和稳定性容易受到初始聚类中心影响的不足࿰

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小王曾是少年

如果对你有帮助,欢迎支持我

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值