人工智能在追求真理和正确性方面面临诸多挑战,而人类的思维方式在其中扮演着重要角色。然而,新一代的人工智能正通过更具实验性的方法,力图在机器学习领域实现远超人类的突破。
AlphaGo:人工智能的里程碑
提及人工智能的突破,不得不提DeepMind的AlphaGo。它不仅代表了人工智能发展的一个根本性转折,还标志着第一批不接受人类指令、不阅读规则即可玩游戏的人工智能的诞生。AlphaGo采用了“自我游戏强化学习”技术,通过数百万甚至数十亿的虚拟游戏进行纯粹的试验和错误,逐渐建立起对围棋的深刻理解。在短短两年内,它便以5比0击败了欧洲围棋冠军,并在2017年成功击败世界排名第一的人类棋手。
DeepMind随后在国际象棋领域推出了AlphaZero模型,与人工智能卫冕冠军Stockfish进行了100场比赛,取得了28场胜利,其余比赛打成平手。这一成就进一步证明了人工智能在脱离人类思维指导后,依然能够取得卓越成果。
人工智能与人类思维的分离
随着人工智能的发展,它开始与人类思维产生不祥的分离。这些电子大脑受到不同的限制,拥有不同的天赋,它们被赋予了自由,以自己的方式与事物互动,发挥自己的认知优势,并建立自己对什么有效、什么无效的基本理解。
AlphaZero并不具备人类象棋大师的知识和经验,但它通过大量的自我对弈,创造了自己的胜利和失败的冷酷硬逻辑。这种不依赖人类思维的自我进化能力,使得人工智能在诸多领域开始超越人类。
o1模型:迈向真理的新尝试
OpenAI的新o1模型在强化学习方面迈出了重要的一步。与之前的模型不同,o1在回答提示之前会建立一段“思考时间”,在这段时间里,它会产生一个“思维链”,考虑并推理出解决问题的方法。这种强化学习方法使得o1模型不再仅仅是一个自动补全系统,而是真正开始关心事情的对错。
通过部分训练,o1模型被赋予了在其思维推理链中以随机试错方法解决问题的自由。它仍然只有人类生成的推理步骤可供借鉴,但它可以自由地随机应用这些步骤,并得出自己的结论。这种尝试和错误的方法使得o1模型在诸多领域取得了显著进步,尤其是在有明确正确和错误答案的话题中。
具身人工智能:探索物理世界的奥秘
随着人工智能的发展,嵌入机器人身体的人工智能开始建立自己对物理世界如何运作的基本理解。它们将采取一种奇特的AlphaGo风格的方法来理解世界,戳戳现实,观察结果,并用自己的语言建立自己的理论。
这些具身人工智能不会像人类或动物那样接近现实,也不会使用科学方法或进行传统的实验。然而,它们将拥有惊人的学习速度和群体学习能力,能够在短时间内发现人类无法拼凑在一起的新知识。
未来的展望
虽然人工智能在物理世界的学习过程中可能会遇到诸多挑战,但一旦它们实现了对物理世界的深刻理解,将有可能在诸多领域取得突破。特斯拉、Figure和Sanctuary AI等公司正致力于打造具有商业价值和成本竞争力的类人机器人,一旦这些机器人被大量制造出来,它们将能够在规模和速度上进行反复试验,推动人工智能的进一步发展。
然而,我们也应该意识到人工智能发展的潜在风险。虽然它们目前仍然受到诸多限制,但一旦它们突破了人类知识的界限,可能会发现宇宙的真相和新技术,这些是人类在很长时间内都无法实现的。因此,我们需要保持警惕,确保人工智能的发展在可控范围内进行。