系列篇章💥
No. | 文章 |
---|---|
1 | 【GitHub周榜】OpenHands:AI赋能,软件开发效率狂飙10倍 |
2 | 【GitHub周榜】Agno:快速构建多模态智能体的轻量级框架,开发提速 10000 倍 |
3 | 【GitHub周榜】WrenAI:开源SQL AI代理,让Text-to-SQL轻松实现,开启自然语言与数据交互新时代 |
目录
- 系列篇章💥
- 前言
- 一、项目概述
- 二、主要功能
-
- 1、多语言自然对话
- 2、智能数据探索
- 3、语义索引系统
- 4、上下文 SQL 生成
- 5、无代码数据分析
- 6、AI 驱动可视化
- 7、数据导出集成
- 8、安全性保障
- 三、技术原理
- 四、应用场景
-
- 1、数据分析
- 2、业务报告
- 3、数据探索
- 4、教育与研究
- 5、客户支持
- 6、数据民主化
- 五、快速使用
-
- 1、前提条件
- 2、安装步骤(以 Windows 为例):
- 3、使用说明
- 结语
- 项目地址
前言
在大数据时代,数据已经成为企业和组织决策的重要依据。然而,对于很多非技术背景的人员来说,从海量数据中获取有价值的信息并非易事,SQL 等查询语言的复杂性成为了他们与数据之间的一道障碍。WrenAI 的出现,为解决这一问题提供了新的思路。作为一款开源的文本到 SQL 工具,它让用户能够通过自然语言与数据进行交互,极大地降低了数据查询和分析的门槛,为数据驱动的决策提供了更加便捷高效的方式。接下来,让我们一起深入了解 WrenAI 的强大之处。
一、项目概述
WrenAI 是由 Canner 团队开发的开源 AI 助手,旨在打破数据查询和分析的技术壁垒,帮助数据团队、产品团队和业务团队等通过自然语言对话的方式获取数据洞察。
它能够将用户输入的自然语言自动转换为 SQL 查询,还能生成图表、电子表格和报告等,实现从数据提问到报表生成的完整流程,真正提供了一个端到端的解决方案。无论是数据科学家进行复杂的数据探索,还是业务人员想要快速了解业务数据,WrenAI 都能满足他们的需求。
二、主要功能
1、多语言自然对话
支持英语、德语、西班牙语、法语、日语、韩语、葡萄牙语、中文等多种语言与数据进行交互。
这使得不同语言背景的用户都能轻松使用,无论是跨国公司的数据分析,还是面向全球用户的应用开发,WrenAI 都能适应多样化的语言需求。
2、智能数据探索
具备 AI 驱动的数据理解和问题推荐功能。当用户面对复杂的数据时,它不仅能回答 “我有哪些数据”“我的客户表有哪些列” 这类基础探索性问题,还能根据用户之前的提问和数据上下文,动态生成推荐问题和智能后续查询,
引导用户更深入地挖掘数据价值。
3、语义索引系统
通过精心设计的 UI/UX 实现语义理解。它能在数据模式上建立逻辑表示层,帮助大语言模型(LLM)更好地理解业务上下文,从而生成更准确的 SQL 查询,避免因语义理解偏差导致的查询错误。
4、上下文 SQL 生成
结合元数据、模式和术语,利用 “建模定义语言” 生成准确的 SQL 查询。它会充分考虑数据的结构、关系以及用户提问的上下文,减少重复编码,简化数据连接,让用户无需手动编写复杂的 SQL 语句,就能获取到精准的数据结果。
5、无代码数据分析
用户仅通过对话即可获取数据洞察。在开始新对话时,输入的问题会用于找到最相关的表格,LLM 还会生成相关问题供用户参考。用户可以通过不断的后续提问,获得更深入的洞察,无需掌握专业的编程技能。
6、AI 驱动可视化
自动生成数据摘要和可视化图表。
其 GenBI 功能可将查询结果立即转换为 AI 生成的报告和图表,将原始数据转化为清晰、可操作的可视化信息,无论是柱状图、折线图还是饼图,都能直观展示数据特征,帮助用户快速理解数据背后的信息。
7、数据导出集成
支持导出到 Excel、Google Sheets 等分析工具,提供无缝的端到端工作流程。
用户在 WrenAI 中完成数据查询和分析后,可以方便地将结果导出到熟悉的工具中进行进一步处理和分享。
8、安全性保障
采用 RAG(检索增强生成)架构,无需暴露数据给 LLM 模型。利用模式和上下文生成 SQL 查询,有效保护了数据的安全性和隐私性,让企业和组织可以放心使用。
三、技术原理
WrenAI 主要使用 Python 作为实现语言,结合自然语言处理(NLP)技术来解析文本查询并转换成 SQL。
在自然语言处理过程中,它会对用户输入的文本进行词法分析、句法分析和语义理解,提取关键信息,并将其映射到相应的数据表和字段上。
前端开发使用 TypeScript、Next.js 构建直观易用的用户界面,用户可以方便地输入问题、查看结果和进行交互操作。后端服务框架采用 FastAPI,负责处理用户请求、与数据库进行交互以及调用相关的 AI 服务。
WrenAI 的核心服务包括:
- Wren UI:提供直观的用户界面,用于提问、定义数据关系和集成数据来源,是用户与 WrenAI 交互的主要入口。
- Wren AI Service:使用向量数据库进行上下文检索来处理查询,引导 LLMs 生成精确的 SQL 输出,确保查询结果的准确性和相关性。
- Wren Engine:作为语义引擎,将业务术语映射到数据源,定义关系,并包含预定义的计算和聚合,帮助模型更好地理解业务逻辑。
四、应用场景
1、数据分析
对于不熟悉 SQL 的数据分析师、业务分析师或非技术用户,WrenAI 是得力助手。他们可以通过自然语言提问来获取数据库中的信息,快速完成数据汇总、筛选、对比等分析任务,无需花费大量时间学习复杂的 SQL 语法。
2、业务报告
业务团队可以使用 WrenAI 快速生成报告,通过简单的文本命令获取所需的数据洞察,如销售数据统计、市场份额分析等,大大提高报告生成的效率,为决策提供及时的数据支持。
3、数据探索
数据科学家和研究人员可以利用 WrenAI 进行数据探索,通过自然语言查询来试验不同的数据视角和查询条件,发现数据中的潜在规律和趋势,为进一步的研究和建模提供基础。
内部工具开发
开发者可以将 WrenAI 集成到内部工具或应用程序中,为用户提供更加友好的数据查询接口,提升内部工具的智能化水平和用户体验。
4、教育与研究
在教育和研究领域,WrenAI 可以作为教学工具,帮助学生和研究人员通过自然语言处理数据库,无需深入学习 SQL,就能理解数据查询和分析的基本原理,培养数据思维。
5、客户支持
客户支持团队可以通过 WrenAI 快速检索客户数据,如订单信息、投诉记录等,以提供更个性化的服务,提高客户满意度。
决策支持系统
高层管理人员可以使用 WrenAI 来获取即时的数据支持,快速了解关键业务指标,帮助他们做出基于数据的决策,提升决策的科学性和准确性。
6、数据民主化
WrenAI 使得组织内的任何成员都能轻松访问和理解数据,促进了数据的民主化,让数据不再是少数技术人员的专属,提高了整个组织的数据素养和工作效率。
五、快速使用
1、前提条件
需要安装 Docker 环境,并拥有 OpenAI Key。
2、安装步骤(以 Windows 为例):
1)在 GitHub 项目页面下载wren-launcher-windows.zip压缩包。
2)解压后以管理员身份运行wren-launcher-windows.exe可执行文件。
3)如出现弹窗,选择更多信息并点击仍然运行。
4)选择您想要选择的 LLM 提供商,如果是 OpenAI,请进入下一步;否则,请选择其他。
5)输入你的 OpenAI API 密钥,然后选择想在 WrenAI 中使用的 OpenAI 生成模型。
6)等待安装完成,安装完成后会为你设置 Docker 容器,并在浏览器中打开应用程序的 URL。如果启动程序没有打开 URL,请访问localhost:3000开始使用 WrenAI。
3、使用说明
安装完成后,用户就可以在界面中输入自然语言问题,比如 “显示过去一年各地区的销售总额”,WrenAI 会自动理解问题,生成相应的 SQL 查询,并展示可视化结果,用户还可以根据需求进一步导出数据或生成报告。
结语
WrenAI 作为一款创新的开源文本到 SQL 工具,以其强大的功能、先进的技术和广泛的应用场景,为数据查询和分析带来了新的变革。它让自然语言与数据的交互变得简单高效,降低了数据分析的门槛,促进了数据的民主化。随着技术的不断发展和完善,相信 WrenAI 会在更多领域发挥重要作用,帮助更多的团队和个人从数据中获取有价值的信息,做出更明智的决策。
项目地址
GitHub仓库:https://github.com/Canner/WrenAI
SourceForge:https://sourceforge.net/projects/wrenai.mirror/
官方网站:https://getwren.ai/oss
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓