你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句t[i, j]来访问其中的任何元素.而对于三阶张量你可以用't[i, j, k]'来访问其中的任何元素.
张量是所有深度学习框架中最核心的组件,因为后续的所有运算和优化算法都是基于张量进行的。几何代数中定义的张量是基于向量和矩阵的推广,通俗一点理解的话,我们可以将标量视为零阶张量,矢量视为一阶张量,那么矩阵就是二阶张量。
举例来说,我们可以将任意一张RGB彩色图片表示成一个三阶张量(三个维度分别是图片的高度、宽度和色彩数据)。如下图所示是一张普通的水果图片,按照RGB三原色表示,其可以拆分为三张红色、绿色和蓝色的灰度图片,如果将这种表示方法用张量的形式写出来,就是图中最下方的那张表格。
图中只显示了前5行、320列的数据,每个方格代表一个像素点,其中的数据[1.0, 1.0, 1.0]即为颜色。假设用[1.0, 0, 0]表示红色,[0, 1.0, 0]表示绿色,[0, 0, 1.0]表示蓝色,那么如图所示,前面5行的数据则全是白色。
将这一定义进行扩展,我们也可以用四阶张量表示一个包含多张图片的数据集,其中的四个维度分别是:图片在数据集中的编号,图片高度、宽度,以及色彩数据。
---------------------
作者:Boss_Xiao_Wang
来源:CSDN
原文:https://blog.csdn.net/weixin_40013463/article/details/81025760
版权声明:本文为博主原创文章,转载请附上博文链接!