在Newton-Leibnitz公式应用受到限制时,可以用数值方法构造计算公式,即所谓的数值积分方法来解决定积分的计算问题。
- 表格函数,如某个微分方程的解不能用解析方法解出,而用数值方法给出的解是表格函数
- 被积函数 f ( x ) f(x) f(x)的原函数 F ( x ) F(x) F(x)不能用初等函数的有限形式来表示,或表达形式过于复杂,不便于实际应用
1. 数值积分的基本思想
由高等数学可知,积分中值定理的表示形式为:
I
=
∫
a
b
f
(
x
)
d
x
=
(
b
−
a
)
f
(
ϵ
)
I=\int_{a}^bf(x)dx=(b-a)f(\epsilon)
I=∫abf(x)dx=(b−a)f(ϵ)
其中,
ϵ
\epsilon
ϵ为积分区间
(
a
,
b
)
(a,b)
(a,b)内的某个点,虽然理论上给出了求定积分I的另一种解析方法,但是,由于在一般情况下无法准确得到
ϵ
\epsilon
ϵ值,难以计算。因此,用数值方法构造某种近似公式来代替
f
(
ϵ
)
f(\epsilon)
f(ϵ),从而构造出相应的数值积分公式。
1)矩形求积公式
左矩形、右矩形、中矩形公式
2)梯形求积公式
3)Simpson求积公式
∫
a
b
f
(
x
)
d
x
≈
1
6
(
b
−
a
)
[
f
(
a
)
+
4
f
(
a
+
b
2
)
+
f
(
b
)
]
=
S
\int_a^bf(x)dx\approx \frac{1}{6}(b-a)[f(a)+4f(\frac{a+b}{2})+f(b)]=S
∫abf(x)dx≈61(b−a)[f(a)+4f(2a+b)+f(b)]=S
Simpson求积公式是用区间
[
a
,
b
]
[a,b]
[a,b]内三个点的函数值的加权平均值来近似代替
f
(
ξ
)
f(\xi)
f(ξ)而构成数值积分公式的。
下图,是三种求积公式,图中阴影部分面积表示用数值方法计算的定积分近似值,并称其曲边为数值曲线。它是函数曲线的近似。在三种简单的求积公式中,Simpson求积公式的精度是最高的,但仍然和准确值之间存在误差。
为了提高求积公式的计算精度,在区间 [ a , b ] [a,b] [a,b]内,用更多点的函数值的加权平均值构造一个精度更高的数值积分公式。因为在一般情形下,在区间 [ a , b ] [a,b] [a,b]内,如果数值曲线上的点和函数曲线上的点重合越多、两条曲线越接近,数值积分的精度就越高。
数值积分的基本思想:在区间 [ a , b ] [a,b] [a,b]内,用充分多的点的函数值的加权平均值来代替 f ( ϵ ) f(\epsilon) f(ϵ),从而可构造出一般的求积公式。
2. 一般求积公式
若在区间
[
a
,
b
]
[a,b]
[a,b]内,取
n
+
1
n+1
n+1个节点
x
i
(
i
=
0
,
1
,
2
,
⋯
,
n
)
x_i(i=0,1,2,\cdots,n)
xi(i=0,1,2,⋯,n),用
f
(
x
i
)
(
i
=
0
,
1
,
2
,
⋯
,
n
)
f(x_i)(i=0,1,2,\cdots,n)
f(xi)(i=0,1,2,⋯,n)的加权平均值作为
f
(
ξ
)
f(\xi)
f(ξ)的近似值,即:
f
(
ξ
)
≈
∑
i
=
0
n
C
i
f
(
x
i
)
f(\xi)\approx \sum_{i=0}^nC_if(x_i)
f(ξ)≈i=0∑nCif(xi)
其中,
∑
i
=
0
n
C
i
=
1
\sum_{i=0}^nC_i=1
∑i=0nCi=1
有:
f
a
b
f
(
x
)
d
x
=
(
b
−
a
)
f
(
ϵ
)
≈
(
b
−
a
)
∑
i
=
0
n
C
i
f
(
x
i
)
f_a^bf(x)dx=(b-a)f(\epsilon)\approx (b-a)\sum_{i=0}^nC_if(x_i)
fabf(x)dx=(b−a)f(ϵ)≈(b−a)i=0∑nCif(xi)
或写成
∫
a
b
f
(
x
)
d
x
≈
∑
i
=
0
n
A
i
f
(
x
i
)
(1)
\int_a^bf(x)dx \approx \sum_{i=0}^nA_if(x_i) \tag{1}
∫abf(x)dx≈i=0∑nAif(xi)(1)
其中,
x
i
(
i
=
0
,
1
,
2
,
⋯
,
n
)
x_i(i=0,1,2,\cdots,n)
xi(i=0,1,2,⋯,n)称为求积节点,
A
i
(
i
=
0
,
1
,
2
,
⋯
,
n
)
A_i(i=0,1,2,\cdots,n)
Ai(i=0,1,2,⋯,n)称为求积系数,
A
i
A_i
Ai只依赖于求积节点和积分区间,而与求积函数
f
(
x
)
f(x)
f(x)无关。式(1)称为一般求积公式或机械求积公式。
这样用若干求积节点的函数值的加权平均值来计算定积分的方法,称为机械求积方法。机械求积方法将积分中求原函数 F ( x ) F(x) F(x)的问题转化为求节点 x i x_i xi处的函数值 f ( x i ) f(x_i) f(xi)的问题,使积分问题的计算得到大大简化。
机械求积公式是一般形式的数值积分公式,在实际应用中,必须首先解决两个基本问题:
求积公式的精度与求积节点数有什么关系?如何确定求积公式中的节点和求积系数?