数值积分 (一)| 基本思想 + 一般求积公式

在Newton-Leibnitz公式应用受到限制时,可以用数值方法构造计算公式,即所谓的数值积分方法来解决定积分的计算问题。

  1. 表格函数,如某个微分方程的解不能用解析方法解出,而用数值方法给出的解是表格函数
  2. 被积函数 f ( x ) f(x) f(x)的原函数 F ( x ) F(x) F(x)不能用初等函数的有限形式来表示,或表达形式过于复杂,不便于实际应用

1. 数值积分的基本思想

由高等数学可知,积分中值定理的表示形式为:
I = ∫ a b f ( x ) d x = ( b − a ) f ( ϵ ) I=\int_{a}^bf(x)dx=(b-a)f(\epsilon) I=abf(x)dx=(ba)f(ϵ)
其中, ϵ \epsilon ϵ为积分区间 ( a , b ) (a,b) (a,b)内的某个点,虽然理论上给出了求定积分I的另一种解析方法,但是,由于在一般情况下无法准确得到 ϵ \epsilon ϵ值,难以计算。因此,用数值方法构造某种近似公式来代替 f ( ϵ ) f(\epsilon) f(ϵ),从而构造出相应的数值积分公式。

1)矩形求积公式

左矩形、右矩形、中矩形公式

2)梯形求积公式

3)Simpson求积公式
∫ a b f ( x ) d x ≈ 1 6 ( b − a ) [ f ( a ) + 4 f ( a + b 2 ) + f ( b ) ] = S \int_a^bf(x)dx\approx \frac{1}{6}(b-a)[f(a)+4f(\frac{a+b}{2})+f(b)]=S abf(x)dx61(ba)[f(a)+4f(2a+b)+f(b)]=S
Simpson求积公式是用区间 [ a , b ] [a,b] [a,b]内三个点的函数值的加权平均值来近似代替 f ( ξ ) f(\xi) f(ξ)而构成数值积分公式的。

下图,是三种求积公式,图中阴影部分面积表示用数值方法计算的定积分近似值,并称其曲边为数值曲线。它是函数曲线的近似。在三种简单的求积公式中,Simpson求积公式的精度是最高的,但仍然和准确值之间存在误差。

为了提高求积公式的计算精度,在区间 [ a , b ] [a,b] [a,b]内,用更多点的函数值的加权平均值构造一个精度更高的数值积分公式。因为在一般情形下,在区间 [ a , b ] [a,b] [a,b]内,如果数值曲线上的点和函数曲线上的点重合越多、两条曲线越接近,数值积分的精度就越高。

数值积分的基本思想:在区间 [ a , b ] [a,b] [a,b]内,用充分多的点的函数值的加权平均值来代替 f ( ϵ ) f(\epsilon) f(ϵ),从而可构造出一般的求积公式。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bKnE8qaL-1592529320149)(/Users/can/Library/Application Support/typora-user-images/image-20200611164320836.png)]

2. 一般求积公式

若在区间 [ a , b ] [a,b] [a,b]内,取 n + 1 n+1 n+1个节点 x i ( i = 0 , 1 , 2 , ⋯   , n ) x_i(i=0,1,2,\cdots,n) xi(i=0,1,2,,n),用 f ( x i ) ( i = 0 , 1 , 2 , ⋯   , n ) f(x_i)(i=0,1,2,\cdots,n) f(xi)(i=0,1,2,,n)的加权平均值作为 f ( ξ ) f(\xi) f(ξ)的近似值,即:
f ( ξ ) ≈ ∑ i = 0 n C i f ( x i ) f(\xi)\approx \sum_{i=0}^nC_if(x_i) f(ξ)i=0nCif(xi)
其中, ∑ i = 0 n C i = 1 \sum_{i=0}^nC_i=1 i=0nCi=1

有:
f a b f ( x ) d x = ( b − a ) f ( ϵ ) ≈ ( b − a ) ∑ i = 0 n C i f ( x i ) f_a^bf(x)dx=(b-a)f(\epsilon)\approx (b-a)\sum_{i=0}^nC_if(x_i) fabf(x)dx=(ba)f(ϵ)(ba)i=0nCif(xi)
或写成
∫ a b f ( x ) d x ≈ ∑ i = 0 n A i f ( x i ) (1) \int_a^bf(x)dx \approx \sum_{i=0}^nA_if(x_i) \tag{1} abf(x)dxi=0nAif(xi)(1)
其中, x i ( i = 0 , 1 , 2 , ⋯   , n ) x_i(i=0,1,2,\cdots,n) xi(i=0,1,2,,n)称为求积节点, A i ( i = 0 , 1 , 2 , ⋯   , n ) A_i(i=0,1,2,\cdots,n) Ai(i=0,1,2,,n)称为求积系数, A i A_i Ai只依赖于求积节点和积分区间,而与求积函数 f ( x ) f(x) f(x)无关。式(1)称为一般求积公式或机械求积公式。

这样用若干求积节点的函数值的加权平均值来计算定积分的方法,称为机械求积方法。机械求积方法将积分中求原函数 F ( x ) F(x) F(x)的问题转化为求节点 x i x_i xi处的函数值 f ( x i ) f(x_i) f(xi)的问题,使积分问题的计算得到大大简化。

机械求积公式是一般形式的数值积分公式,在实际应用中,必须首先解决两个基本问题:

求积公式的精度与求积节点数有什么关系?如何确定求积公式中的节点和求积系数?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值